浙江农业科学 ›› 2021, Vol. 62 ›› Issue (10): 2036-2043.DOI: 10.16178/j.issn.0528-9017.20211039
石颖1(), FAISAL Islam1, 周伟军1, 王尖2,*(
)
收稿日期:
2021-01-20
出版日期:
2021-10-11
发布日期:
2021-10-18
通讯作者:
王尖
作者简介:
王尖(1990—),男,浙江新昌人,副研究员,博士,主要从事作物逆境调节研究,E-mail: wangjian@zaas.ac.cn。基金资助:
Received:
2021-01-20
Online:
2021-10-11
Published:
2021-10-18
摘要:
除草剂2,4-二氯苯氧基乙酸(2,4-D)在农业生产中主要用于控制杂草,同时也是环境中分布最广泛的污染物之一。本文综述了2,4-D在环境中的分布和存在形态以及代谢降解过程,阐述了2,4-D对生物的毒害和环境的互作效应,概括了2,4-D的使用现状和杂草产生的抗药性,并对未来2,4-D的应用进行展望。
中图分类号:
石颖, FAISAL Islam, 周伟军, 王尖. 激素类除草剂2,4-D的降解及对作物与环境的影响[J]. 浙江农业科学, 2021, 62(10): 2036-2043.
环境 | 2,4-D浓度 | 检测地点 |
---|---|---|
水体 | 0.062~0.207 μg·L-1 | 饮用水和地表水(西班牙)[ |
12.3 μg·L-1 | 工厂排水(中国)[ | |
0.46 μg·L-1 | 郊区地表水(美国)[ | |
1.16 μg·L-1 | Pinios河流域(希腊)[ | |
空气 | 0.034 ng·m-3和0.058 ng·m-3 | 两个不同的托儿所(美国)[ |
0.09~4.24 ng·m-3 | 2,4-D生产公司(中国)[ | |
食物 | 0.45~1.59 ng·g-1 | 托儿所、家中的固体和流体食物(美国)[ |
尿液 | 11 μg·kg-1 | 携带个人防护具喷施2,4-D的林业工人[ |
灰尘 | 606 ng·g-1 | 底特律(美国)[ |
87 ng·g-1 | 洛杉矶(美国)[ | |
1 512 ng·g-1 | 爱荷华州(美国)[ | |
374 ng·g-1 | 西雅图(美国)[ |
表1 2,4-D的分布和含量
环境 | 2,4-D浓度 | 检测地点 |
---|---|---|
水体 | 0.062~0.207 μg·L-1 | 饮用水和地表水(西班牙)[ |
12.3 μg·L-1 | 工厂排水(中国)[ | |
0.46 μg·L-1 | 郊区地表水(美国)[ | |
1.16 μg·L-1 | Pinios河流域(希腊)[ | |
空气 | 0.034 ng·m-3和0.058 ng·m-3 | 两个不同的托儿所(美国)[ |
0.09~4.24 ng·m-3 | 2,4-D生产公司(中国)[ | |
食物 | 0.45~1.59 ng·g-1 | 托儿所、家中的固体和流体食物(美国)[ |
尿液 | 11 μg·kg-1 | 携带个人防护具喷施2,4-D的林业工人[ |
灰尘 | 606 ng·g-1 | 底特律(美国)[ |
87 ng·g-1 | 洛杉矶(美国)[ | |
1 512 ng·g-1 | 爱荷华州(美国)[ | |
374 ng·g-1 | 西雅图(美国)[ |
菌株 | 分离地点 | 降解潜力 |
---|---|---|
Thauera sp. DKT | 河流沉积物(越南) | 0.017 mmol(24 h)[ |
Umbelopsis isabellina DSM 1414 | 普通土壤(加拿大) | 23.75 mg·L-1(5 d)[ |
Burkholderia | 农业用地(墨西哥) | 27.7 mg·L-1(150 d)[ |
Achromobacter sp. QXH | 土壤和烂泥的混合物(中国) | 144 mg·L-1(18 d)[ |
Cupriavidus campinensis BJ71 | 长期喷施除草剂的小麦田(中国) | 200 mg·L-1(3 d)[ |
Achromo bacteranxifer LZ35 | 2,4-D工厂附近污染的土壤(中国) | 200 mg·L-1(2 d)[ |
Novosphingobium strain DY4 | 水稻田(中国) | 200 mg·L-1(5 d)[ |
Cupriavidus sp. CY-1 | 原始森林土壤(日本) | 700 mg·L-1(5 d)[ |
表2 降解2,4-D的潜力微生物菌株
菌株 | 分离地点 | 降解潜力 |
---|---|---|
Thauera sp. DKT | 河流沉积物(越南) | 0.017 mmol(24 h)[ |
Umbelopsis isabellina DSM 1414 | 普通土壤(加拿大) | 23.75 mg·L-1(5 d)[ |
Burkholderia | 农业用地(墨西哥) | 27.7 mg·L-1(150 d)[ |
Achromobacter sp. QXH | 土壤和烂泥的混合物(中国) | 144 mg·L-1(18 d)[ |
Cupriavidus campinensis BJ71 | 长期喷施除草剂的小麦田(中国) | 200 mg·L-1(3 d)[ |
Achromo bacteranxifer LZ35 | 2,4-D工厂附近污染的土壤(中国) | 200 mg·L-1(2 d)[ |
Novosphingobium strain DY4 | 水稻田(中国) | 200 mg·L-1(5 d)[ |
Cupriavidus sp. CY-1 | 原始森林土壤(日本) | 700 mg·L-1(5 d)[ |
[1] | 左忠, 李明, 温淑红, 等. 宁夏盐池栽培甘草田杂草种类普查与防治技术探讨[J]. 宁夏农林科技, 2011, 52(1):18-21,45. |
[2] |
ISLAM F, WANG J, FAROOQ M A, et al. Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems[J]. Environment International, 2018, 111:332-351.
DOI URL |
[3] |
SONG Y L. Insight into the mode of action of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as an herbicide[J]. Journal of Integrative Plant Biology, 2014, 56(2):106-113.
DOI URL |
[4] | 筱禾. 2, 4-滴的回顾与展望(上)[J]. 世界农药, 2017, 39(3):31-38,48. |
[5] |
ORDAZ-GUILLÉN Y, GALÍNDEZ-MAYER C J, RUIZ-ORDAZ N, et al. Evaluating the degradation of the herbicides picloram and 2, 4-D in a compartmentalized reactive biobarrier with internal liquid recirculation[J]. Environmental Science and Pollution Research International, 2014, 21(14):8765-8773.
DOI URL |
[6] |
RODIL R, QUINTANA J B, CONCHA-GRAÑA E, et al. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain)[J]. Chemosphere, 2012, 86(10):1040-1049.
DOI URL |
[7] | 严继东, 胡浩军, 侯逸众. 柱前衍生-气相色谱法测定饮用水中的2, 4-滴[J]. 中国卫生检验杂志, 2020, 30(14):1689-1691. |
[8] |
WIJNJA H, DOHERTY J J, SAFIE S A. Changes in pesticide occurrence in suburban surface waters in Massachusetts, USA, 1999—2010[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2):228-232.
DOI URL |
[9] |
TSABOULA A, PAPADAKIS E N, VRYZAS Z, et al. Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate[J]. Environment International, 2016, 91:78-93.
DOI URL |
[10] | WILSON N K, CHUANG J C, LYU C, et al. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home[J]. Journal of Exposure Science & Environmental Epidemiology, 2003, 13(3):187-202. |
[11] |
ZHANG W F, ZHANG F, RAZIUDDIN R, et al. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress[J]. Journal of Plant Growth Regulation, 2008, 27(2):159-169.
DOI URL |
[12] | COLT J S, LUBIN J, CAMANN D, et al. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four US sites[J]. Journal of Exposure Analysis and Environmental Epidemiology, 2004, 14(1):74-83. |
[13] |
SERBENT M P, REBELO A M, PINHEIRO A, et al. Biological agents for 2, 4-dichlorophenoxyacetic acid herbicide degradation[J]. Applied Microbiology and Biotechnology, 2019, 103(13):5065-5078.
DOI URL |
[14] |
ZHARIKOVA N V, IASAKOV T R, ZHURENKO E Y, et al. Bacterial genes of 2, 4-dichlorophenoxyacetic acid degradation encoding α-ketoglutarate-dependent dioxygenase activity[J]. Biology Bulletin Reviews, 2018, 8(2):155-167.
DOI URL |
[15] |
KIJIMA K, MITA H, KAWAKAMI M, et al. Role of CadC and CadD in the 2, 4-dichlorophenoxyacetic acid oxygenase system of Sphingomonas agrestis 58-1[J]. Journal of Bioscience and Bioengineering, 2018, 125(6):649-653.
DOI URL |
[16] |
HA D D. Anaerobic degradation of 2, 4-dichlorophenoxyacetic acid by Thauera sp. DKT[J]. Biodegradation, 2018, 29(5):499-510.
DOI URL |
[17] |
NYKIEL-SZYMAŃSKA J, STOLAREK P, BERNAT P. Elimination and detoxification of 2, 4-D by Umbelopsis isabellina with the involvement of cytochrome P450[J]. Environmental Science and Pollution Research International, 2018, 25(3):2738-2743.
DOI URL |
[18] | GONZÁLEZ-CUNA S, GALÍNDEZ-MAYER J, RUIZ-ORDAZ N, et al. Aerobic biofilm reactor for treating a commercial formulation of the herbicides 2, 4-D and dicamba: Biodegradation kinetics and biofilm bacterial diversity[J]. International Biodeterioration & Biodegradation, 2016, 107:123-131. |
[19] |
QUAN X C, MA J Y, XIONG W C, et al. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2, 4-dichlorophenoxyacetic acid degrading aerobic granules[J]. Bioprocess and Biosystems Engineering, 2015, 38(6):1081-1090.
DOI URL |
[20] |
HAN L Z, ZHAO D G, LI C C. Isolation and 2, 4-D-degrading characteristics of Cupriavidus campinensis BJ71[J]. Brazilian Journal of Microbiology, 2015, 46(2):433-441.
DOI URL |
[21] |
XIA Z Y, ZHANG L, ZHAO Y, et al. Biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35[J]. Current Microbiology, 2017, 74(2):193-202.
DOI URL |
[22] |
DAI Y, LI N N, ZHAO Q, et al. Bioremediation using Novosphingobium strain DY4 for 2, 4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure[J]. Biodegradation, 2015, 26(2):161-170.
DOI URL |
[23] |
CHANG Y C, REDDY M V, UMEMOTO H, et al. Bio-augmentation of Cupriavidus sp. CY-1 into 2, 4-D contaminated soil: microbial community analysis by culture dependent and independent techniques[J]. PLoS One, 2015, 10(12):e0145057.
DOI URL |
[24] | DUKE S O. Weed physiology[M]. CRC Press, 2018. |
[25] | 李如男, 董丰收, 吴小虎, 等. 酶介导下农药在植物中的三相代谢转化研究进展[J]. 农药学学报, 2019, 21(Z1):799-814. |
[26] | SHIMABUKURO R H. Detoxication of herbicides[M]//Weed Physiology. CRC Press, 2018: 215-240. |
[27] |
TODD O E, FIGUEIREDO M R A, MORRAN S, et al. Synthetic auxin herbicides: finding the lock and key to weed resistance[J]. Plant Science, 2020, 300:110631.
DOI URL |
[28] |
KILJANEK T, NIEWIADOWSKA A, SEMENIUK S, et al. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry—honeybee poisoning incidents[J]. Journal of Chromatography A, 2016, 1435:100-114.
DOI URL |
[29] |
ISMAIL B S, PRAYITNO S, TAYEB M A. Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah, Malaysia[J]. Environmental Monitoring and Assessment, 2015, 187(7):1-13.
DOI URL |
[30] |
RASHID B, HUSNAIN T, RIAZUDDIN S, Herbicides and Pesticides as Potential Pollutants: A Global Problem. Plant Adaptation and Phytoremediation, 2010: DOI: 10.1007/978-90-481-9370-7_19.
DOI |
[31] |
GOGGIN D E, CAWTHRAY G R, POWLES S B. 2, 4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport[J]. Journal of Experimental Botany, 2016, 67(11):3223-3235.
DOI URL |
[32] |
GROSSMANN K. Auxin herbicides: current status of mechanism and mode of action[J]. Pest Management Science, 2010, 66(2):113-120.
DOI URL |
[33] |
BONDADA B R. Micromorpho-anatomical examination of 2, 4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves[J]. Journal of Plant Growth Regulation, 2011, 30(2):185-198.
DOI URL |
[34] |
SCIUMBATO A S, SENSEMAN S A, STEELE G L, et al. The effect of 2, 4-D drift rates on cotton (Gossypium hirsutum L.) growth and yield[J]. Plant Health Progress, 2014, 15(2):67-73.
DOI URL |
[35] |
LEON R G, FERRELL J A, BRECKE B J. Impact of exposure to 2, 4-D and dicamba on peanut injury and yield[J]. Weed Technology, 2014, 28(3):465-470.
DOI URL |
[36] |
DEHNERT G K, KARASOV W H, WOLMAN M A. 2, 4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish[J]. Aquatic Toxicology, 2019, 209:1-12.
DOI URL |
[37] |
THIEL N A, SACHETT A, SCHNEIDER S E, et al. Exposure to the herbicide 2, 4-dichlorophenoxyacetic acid impairs mitochondrial function, oxidative status, and behavior in adult zebrafish[J]. Environmental Science and Pollution Research, 2020, 27(36):45874-45882.
DOI URL |
[38] | 范福玉. 除草剂2, 4-滴丁酸[J]. 农药科学与管理, 2018, 39(2):57-58. |
[39] |
FREYDIER L, LUNDGREN J G. Unintended effects of the herbicides 2, 4-D and dicamba on lady beetles[J]. Ecotoxicology (London, England), 2016, 25(6):1270-1277.
DOI URL |
[40] |
GANGULI A, CHOUDHURY D, CHAKRABARTI G. 2, 4-Dichlorophenoxyacetic acid induced toxicity in lung cells by disruption of the tubulin-microtubule network[J]. Toxicology Research, 2014, 3(2):118-130.
DOI URL |
[41] |
PETERSON M A, MCMASTER S A, RIECHERS D E, et al. 2, 4-D past, present, and future: a review[J]. Weed Technology, 2016, 30(2):303-345.
DOI URL |
[42] |
HAINES D A, SARAVANABHAVAN G, WERRY K, et al. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007-2019[J]. International Journal of Hygiene and Environmental Health, 2017, 220(2):13-28.
DOI URL |
[43] | VENNERS S A, KHOSHNOOD N, JERONIMO M, et al. Adult and child urinary 2, 4-D in cities with and without cosmetic pesticide bylaws: a population-based cross-sectional pilot study[J]. Journal of Exposure Science & Environmental Epidemiology, 2017, 27(5):484-490. |
[44] | THOMAS K W, DOSEMECI M, HOPPIN J A, et al. Urinary biomarker, dermal, and air measurement results for 2, 4-D and chlorpyrifos farm applicators in the agricultural health study[J]. Journal of Exposure Science & Environmental Epidemiology, 2010, 20(2):119-134. |
[45] |
LERRO C C, BEANE FREEMAN L E, PORTENGEN L, et al. A longitudinal study of atrazine and 2, 4-D exposure and oxidative stress markers among Iowa corn farmers[J]. Environmental and Molecular Mutagenesis, 2017, 58(1):30-38.
DOI URL |
[46] | 刘光富, 徐晋, 王莹, 等. 除草剂2, 4-滴丁酸与牛血清蛋白的生理作用研究[J]. 河北农业大学学报, 2018, 41(4):12-17. |
[47] |
SYBERG K, BINDERUP M L, CEDERGREEN N, et al. Mixture genotoxicity of 2, 4-dichlorophenoxyacetic acid, acrylamide, and maleic hydrazide on human caco-2 cells assessed with comet assay[J]. Journal of Toxicology and Environmental Health, Part A, 2015, 78(6):369-380.
DOI URL |
[48] |
SUN H D, SHAO W T, LIU H, et al. Exposure to 2, 4-dichlorophenoxyacetic acid induced PPARβ-dependent disruption of glucose metabolism in HepG2 cells[J]. Environmental Science and Pollution Research, 2018, 25(17):17050-17057.
DOI URL |
[49] |
WERNER D, GARRATT J A, PIGOTT G. Sorption of 2, 4-D and other phenoxy herbicides to soil, organic matter, and minerals[J]. Journal of Soils and Sediments, 2013, 13(1):129-139.
DOI URL |
[50] |
ALEKSEEVA T, KOLYAGIN Y, SANCELME M, et al. Effect of soil properties on pure and formulated mesotrione adsorption onto vertisol (Limagne plane, Puy-de-Dôme, France)[J]. Chemosphere, 2014, 111:177-183.
DOI URL |
[51] |
NEJATI K, DAVARY S, SAATI M. Study of 2, 4-dichlorophenoxyacetic acid (2, 4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution[J]. Applied Surface Science, 2013, 280:67-73.
DOI URL |
[52] |
OUYANG W, HUANG W J, WEI P, et al. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities[J]. Journal of Environmental Management, 2016, 175:1-8.
DOI URL |
[53] | 谢杰, 周铁安, 陈宗星, 等. 植物生长调节剂2, 4-D对烟草BY-2细胞黏弹性的影响[J]. 植物生理学报, 2020, 56(5), 56:1053-1063. |
[54] |
HOSSEINI MADANI N S, HOSSEINI SHEKARABI S P, SHAMSAIE MEHRGAN M, et al. Can 2, 4-dichlorophenoxyacetic acid alter growth performance, biochemical composition, and fatty acid profile of the marine microalga Isochrysis galbana?[J]. Phycologia, 2020, 59(6):598-605.
DOI URL |
[55] |
CONG L, YUE R R, WANG H B, et al. 2, 4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynjournal[J]. Physiologia Plantarum, 2019, 166(3):812-820.
DOI URL |
[56] |
PASSAMANI L Z, REIS R S, VALE E M, et al. Long-term culture with 2, 4-dichlorophenoxyacetic acid affects embryogenic competence in sugarcane callus via changes in starch, polyamine and protein profiles[J]. Plant Cell, Tissue and Organ Culture, 2020, 140(2):415-429.
DOI URL |
[57] | REIS R S, VALE E M, SOUSA K R, et al. Pretreatment free of 2, 4-dichlorophenoxyacetic acid improves the differentiation of sugarcane somatic embryos by affecting the hormonal balance and the accumulation of reserves[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2021: 1-15. |
[58] | TIWARI B, KHARWAR S, TIWARI D N. Pesticides and rice agriculture[M]// Cyanobacteria. Amsterdam: Elsevier, 2019: 303-325. |
[59] |
XIN Z J, YU Z N, ERB M, et al. The broad-leaf herbicide 2, 4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp[J]. The New Phytologist, 2012, 194(2):498-510.
DOI URL |
[60] |
ISLAM F, ALI B, WANG J, et al. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars[J]. Plant Physiology and Biochemistry, 2016, 107:82-95.
DOI URL |
[61] |
MOHSIN S M, HASANUZZAMAN M, PARVIN K, et al. Pretreatment of wheat (Triticum aestivum L.) seedlings with 2, 4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems[J]. Plant Physiology and Biochemistry, 2020, 152:221-231.
DOI URL |
[62] |
POWLES S B, YU Q. Evolution in action: plants resistant to herbicides[J]. Annual Review of Plant Biology, 2010, 61:317-347.
DOI URL |
[63] |
DUKE S O. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction[J]. Pest Management Science, 2015, 71(5):652-657.
DOI URL |
[64] | HEAP I. The international survey of herbicide resistant weeds[EB/OL].(2019-10-04)[2020-10-18]. HTTP://www.weedscience.org. |
[65] |
MITHILA J, HALL J C, JOHNSON W G, et al. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops[J]. Weed Science, 2011, 59(4):445-457.
DOI URL |
[66] |
BERNARDS M L, CRESPO R J, KRUGER G R, et al. A waterhemp (Amaranthus tuberculatus) population resistant to 2, 4-D[J]. Weed Science, 2012, 60(3):379-384.
DOI URL |
[67] |
JUGULAM M, DIMEO N, VELDHUIS L J, et al. Investigation of MCPA (4-chloro-2-ethylphenoxyacetate) resistance in wild radish (Raphanus raphanistrum L.)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(51):12516-12521.
DOI URL |
[68] |
WALSH M J, OWEN M J, POWLES S B. Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt[J]. Weed Research, 2007, 47(6):542-550.
DOI URL |
[69] | JUGULAM M, GODAR AS (2014) Cross-resistance of broadleaf weeds to 2,4-D and dicamba (107) [G]//in Proceedings of the Weed Science Society of America Meetings. Lawrence, KS: Weed Science Society of America. http://wssaabstracts.com/public/22/proceedings.html. Accessed July 1, 2015. |
[70] |
DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041):441-445.
DOI URL |
[71] |
CALDERÓN VILLALOBOS L I A, LEE S, DE OLIVEIRA C, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology, 2012, 8(5):477-485.
DOI URL |
[72] | PRIGGE M J, GREENHAM K, ZHANG Y, et al. The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram[J]. G3 (Bethesda, Md), 2016, 6(5):1383-1390. |
[73] |
PIERRE-JEROME E, MOSS B L, NEMHAUSER J L. Tuning the auxin transcriptional response[J]. Journal of Experimental Botany, 2013, 64(9):2557-2563.
DOI URL |
[74] |
YU H, MOSS B L, JANG S S, et al. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity[J]. Plant Physiology, 2013, 162(1):295-303.
DOI URL |
[75] |
GLEASON C, FOLEY R C, SINGH K B. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba[J]. PLoS One, 2011, 6(3):e17245.
DOI URL |
[76] | COUPLAND D. Resistance to the auxin analog herbicides[M]//Herbicide resistance in plants. CRC Press, 1994: 171-214. |
[77] |
RIAR D S, BURKE I C, YENISH J P, et al. Inheritance and physiological basis for 2, 4-D resistance in prickly lettuce (Lactuca serriola L.)[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17):9417-9423.
DOI URL |
[78] |
RIECHERS D E, KREUZ K, ZHANG Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression[J]. Plant Physiology, 2010, 153(1):3-13.
DOI URL |
[1] | 方跃印. 苍南县柑橘黄龙病的防治措施[J]. 浙江农业科学, 2021, 62(8): 1592-1593. |
[2] | 赵健, 许秀琴, 吕燕. UPLC-MS/MS测定大米中伏马毒素、呋虫胺及其代谢物的残留量[J]. 浙江农业科学, 2021, 62(8): 1596-1598. |
[3] | 张小明, 叶胜海, 常志远, 张锐剑, 朱国富, 翟荣荣, 叶靖. 粳稻浙粳99的生物学特性及栽培要点[J]. 浙江农业科学, 2021, 62(6): 1066-1070. |
[4] | 黄福旦, 李斌, 汪帅, 冯晓晓, 李倩, 吴慧明, 王国荣, 郑永利. 番茄髓部坏死病空间分布格局与参数特征应用研究[J]. 浙江农业科学, 2021, 62(5): 969-972. |
[5] | 李庆余, 于强, 王义菊, 牟红梅, 姜福东, 李元军. 梨种质资源对黑斑病的田间抗性鉴定[J]. 浙江农业科学, 2021, 62(10): 2023-2026. |
[6] | 周雪娥, 李辰, 曹杰, 茹美. 桐乡市农作物秸秆资源量及区域分布[J]. 浙江农业科学, 2021, 62(1): 164-166. |
[7] | 李爽. 浙江省传统村落空间分布特征及绿色旅游发展策略[J]. 浙江农业科学, 2021, 62(1): 189-197. |
[8] | 羌烨. 利马豆疮痂病调查研究初报[J]. 浙江农业科学, 2020, 61(7): 1399-1401. |
[9] | 刘顺字, 廖远东, 郭淑贞, 林双娣, 陆俊辉, 赖秀桃, 余其峰. 基于HACCP的黄皮基地产销过程质量安全管控[J]. 浙江农业科学, 2020, 61(7): 1432-1435. |
[10] | 崔雁娜, 郝贵杰, 周聃, 盛鹏程, 童喻浩, 张海琪. HACCP体系在稻虾综合种养中的应用[J]. 浙江农业科学, 2020, 61(6): 1187-1188. |
[11] | 张慧青, 孙玉燕, 范敏. 西瓜炭疽病研究进展[J]. 浙江农业科学, 2020, 61(2): 292-295. |
[12] | 陈伊凡, 李欢欢, 张晋, 唐宏刚, 郭斯统, 周安渊, 陈光耀, 陈黎洪. 酱腌菜中亚硝酸盐控制的研究进展[J]. 浙江农业科学, 2020, 61(12): 2618-2621. |
[13] | 周庄, 吴棣飞, 王晓乐, 李华东, 杨少宗, 杨燕萍, 姚丽娟, 丁炳扬. 浙东南与浙西植物区系新资料[J]. 浙江农业科学, 2020, 61(10): 2182-2184. |
[14] | 劳晓梅, 项楚一, 胡琪琪, 周国鑫, 王霞. 灰飞虱在麦田和杂草田的空间分布型比较[J]. 浙江农业科学, 2020, 61(1): 96-98. |
[15] | 刘淑滨, 尚晶. 黑土地抗生素抗性基因污染风险及对策[J]. 浙江农业科学, 2019, 60(8): 1352-1355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||