浙江农业科学 ›› 2023, Vol. 64 ›› Issue (2): 371-378.DOI: 10.16178/j.issn.0528-9017.20220312
邹丽娜(), 柳婷婷, 李文略, 骆霞虹, 朱关林, 安霞(
)
收稿日期:
2022-04-25
出版日期:
2023-02-11
发布日期:
2023-02-16
通讯作者:
安霞
作者简介:
安霞,女,博士,从事植物遗传育种及抗逆研究工作,E-mail:anxia@zaas.ac.cn。基金资助:
Received:
2022-04-25
Online:
2023-02-11
Published:
2023-02-16
摘要:
地膜覆盖对农田土壤肥力保持和农作物增产等方面具有重要作用,本研究旨在探究可降解麻地膜对作物根际土壤微生物群落组成和多样性的影响,分析土壤微生物群落与土壤环境因子之间的相关关系。本研究以番茄成熟期根际土壤为研究对象,通过高通量测序技术,对麻地膜和塑料地膜处理下番茄根际土壤细菌和真菌微生物群落组成及多样性进行分析,进一步分析土壤环境因子与微生物群落的相关性。结果表明,麻地膜处理对土壤水解氮、有效磷和速效钾没有显著影响,而塑料地膜处理显著降低了水解氮、有机磷和速效钾含量。覆膜处理未显著影响土壤细菌多样性,麻地膜处理显著增加了土壤节细菌属、糖霉菌属和鞘脂菌属等与土壤碳降解相关细菌的相对丰度,促进了土壤碳循环过程;塑料地膜显著降低了节细菌属、伯克霍尔德菌属和丰佑菌属等有益细菌的相对丰度。覆膜处理显著增加了土壤真菌多样性,麻地膜和塑料地膜处理均显著降低了镰刀菌属的相对丰度;而麻地膜处理显著增加了支顶孢属等抑菌真菌的相对丰度,抑制了土壤中病原真菌的繁殖。土壤速效钾是影响土壤细菌和真菌群落组成最主要的环境因子。麻地膜可以增加土壤酶活性,改善土壤细菌和真菌群落组成,改善土壤健康。
中图分类号:
邹丽娜, 柳婷婷, 李文略, 骆霞虹, 朱关林, 安霞. 麻地膜覆盖对番茄根际土壤微生物群落结构的影响[J]. 浙江农业科学, 2023, 64(2): 371-378.
处理 | pH | 有机质/ (g·kg-1) | 含量/(mg·kg-1) | ||
---|---|---|---|---|---|
水解氮 | 有效磷 | 速效钾 | |||
TCK | 4.73±0.13 b | 39.0±0.7 a | 238.67±34.44 a | 112.23±7.48 a | 177.00±2.83 a |
TB | 5.13±0.22 a | 36.6±1.4 b | 206.00±24.58 ab | 110.03±16.74 a | 133.00±45.25 ab |
TP | 5.00±0.20 ab | 36.3±0.8 b | 182.00±5.29 b | 109.80±14.41 a | 96.00±14.93 b |
表1 不同覆膜处理土壤化学性质的变化
处理 | pH | 有机质/ (g·kg-1) | 含量/(mg·kg-1) | ||
---|---|---|---|---|---|
水解氮 | 有效磷 | 速效钾 | |||
TCK | 4.73±0.13 b | 39.0±0.7 a | 238.67±34.44 a | 112.23±7.48 a | 177.00±2.83 a |
TB | 5.13±0.22 a | 36.6±1.4 b | 206.00±24.58 ab | 110.03±16.74 a | 133.00±45.25 ab |
TP | 5.00±0.20 ab | 36.3±0.8 b | 182.00±5.29 b | 109.80±14.41 a | 96.00±14.93 b |
处理 | 含量/(U·g-1) | 含量/(nmol·min-1·g-1) | 含量/(μmol·min-1·g-1) | 含量/ (μg·min-1·g-1) | ||||
---|---|---|---|---|---|---|---|---|
SOD | POD | CAT | LDH | SDH | NAD-MDH | ADH | DHA | |
TCK | 252.31±2.09 b | 233.09±14.40 b | 38.89±8.70 b | 13.61±0.88 b | 36.76±9.37 b | 10.40±0.15 c | 0.11±0.01 b | 0.06±0.00 a |
TB | 275.27±5.69 a | 391.76±13.05 a | 53.82±6.40 a | 11.86±0.31 c | 14.08±0.54 a | 62.57±1.82 a | 0.26±0.06 a | 0.06±0.00 a |
TP | 245.19±13.78 b | 383.41±2.52 a | 45.00±4.02 ab | 15.63±1.05 a | 11.84±1.10 b | 47.27±0.76 ab | 0.27±0.02 a | 0.06±0.00 a |
表2 不同覆膜处理土壤酶活的变化
处理 | 含量/(U·g-1) | 含量/(nmol·min-1·g-1) | 含量/(μmol·min-1·g-1) | 含量/ (μg·min-1·g-1) | ||||
---|---|---|---|---|---|---|---|---|
SOD | POD | CAT | LDH | SDH | NAD-MDH | ADH | DHA | |
TCK | 252.31±2.09 b | 233.09±14.40 b | 38.89±8.70 b | 13.61±0.88 b | 36.76±9.37 b | 10.40±0.15 c | 0.11±0.01 b | 0.06±0.00 a |
TB | 275.27±5.69 a | 391.76±13.05 a | 53.82±6.40 a | 11.86±0.31 c | 14.08±0.54 a | 62.57±1.82 a | 0.26±0.06 a | 0.06±0.00 a |
TP | 245.19±13.78 b | 383.41±2.52 a | 45.00±4.02 ab | 15.63±1.05 a | 11.84±1.10 b | 47.27±0.76 ab | 0.27±0.02 a | 0.06±0.00 a |
基因 | 处理 | 序列数 | 分类操作单元数 | Ace | Chao1 | Shannon | Simpson |
---|---|---|---|---|---|---|---|
16S rRNA | TCK | 52 970±1 296 ab | 1 084±59 a | 1 221±65 a | 1231±70 a | 7.395 0±0.136 0 a | 0.984 8±0.002 3 a |
TB | 51 806±1 426 a | 1 058±158 a | 1 264±126 a | 1 265±140 a | 6.811 0±0.919 6 a | 0.967 9±0.026 0 a | |
TP | 54 382±879 b | 1 227±12 a | 1 376±14 a | 1 386±27 a | 7.270 2±0.274 0 a | 0.971 4±0.008 2 a | |
ITS rRNA | TCK | 52 611±1 739 a | 487±21 b | 563±31 a | 547±36 a | 4.521 6±0.277 5 b | 0.848 9±0.038 0 b |
TB | 53 205±1 962 a | 529±23 a | 586±27 a | 581±37 a | 5.419 4±0.317 5 a | 0.941 8±0.020 0 a | |
TP | 46 537±2 706 b | 533±14 a | 599±17 a | 608±22 a | 5.656 3±0.318 1 a | 0.941 7±0.021 3 a |
表3 不同处理下土壤细菌微生物多样性
基因 | 处理 | 序列数 | 分类操作单元数 | Ace | Chao1 | Shannon | Simpson |
---|---|---|---|---|---|---|---|
16S rRNA | TCK | 52 970±1 296 ab | 1 084±59 a | 1 221±65 a | 1231±70 a | 7.395 0±0.136 0 a | 0.984 8±0.002 3 a |
TB | 51 806±1 426 a | 1 058±158 a | 1 264±126 a | 1 265±140 a | 6.811 0±0.919 6 a | 0.967 9±0.026 0 a | |
TP | 54 382±879 b | 1 227±12 a | 1 376±14 a | 1 386±27 a | 7.270 2±0.274 0 a | 0.971 4±0.008 2 a | |
ITS rRNA | TCK | 52 611±1 739 a | 487±21 b | 563±31 a | 547±36 a | 4.521 6±0.277 5 b | 0.848 9±0.038 0 b |
TB | 53 205±1 962 a | 529±23 a | 586±27 a | 581±37 a | 5.419 4±0.317 5 a | 0.941 8±0.020 0 a | |
TP | 46 537±2 706 b | 533±14 a | 599±17 a | 608±22 a | 5.656 3±0.318 1 a | 0.941 7±0.021 3 a |
[1] | ZHOU L F, FENG H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 540-550. |
[2] | HAN Y N, WEI M, HAN F, et al. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomycessp[J]. Microorganisms, 2020, 8(12): 1979. |
[3] | YU Y X, TAO H, YAO H Y, et al. Assessment of the effect of plastic mulching on soil respiration in the arid agricultural region of China under future climate scenarios[J]. Agricultural and Forest Meteorology, 2018, 256/257: 1-9. |
[4] | WANG X K, WANG G, GUO T, et al. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system[J]. European Journal of Soil Science, 2021, 72(1): 400-412. |
[5] | WANG Y P, LI X G, FU T T, et al. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China[J]. Agricultural and Forest Meteorology, 2016, 228/229: 42-51. |
[6] | STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. |
[7] | BANDOPADHYAY S, MARTIN-CLOSAS L, PELACHO A M, et al. Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions[J]. Frontiers in Microbiology, 2018, 9: 819. |
[8] | QI R M, JONES D L, LI Z, et al. Behavior of microplastics and plastic film residues in the soil environment: a critical review[J]. Science of the Total Environment, 2020, 703: 134722. |
[9] | 石磊, 王朝云, 易永健, 等. 大棚内麻地膜覆盖栽培对土壤环境和大豆产量的影响[J]. 作物杂志, 2010(3): 90-93. |
[10] | 杨敏, 龙世方, 黄道友, 等. 麻纤维地膜还田对土壤-蔬菜系统养分和重金属含量的影响[J]. 生态与农村环境学报, 2020, 36(10): 1347-1352. |
[11] | LARKIN R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles[J]. Soil Biology and Biochemistry, 2003, 35(11): 1451-1466. |
[12] | MAUL J E, BUYER J S, LEHMAN R M, et al. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops[J]. Applied Soil Ecology, 2014, 77: 42-50. |
[13] | DONG W Y, SI P F, LIU E K, et al. Influence of film mulching on soil microbial community in a rainfed region of northeastern China[J]. Scientific Reports, 2017, 7(1): 8468. |
[14] | OBALUM S E, OBI M E. Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems[J]. Soil and Tillage Research, 2010, 108(1/2): 30-36. |
[15] | BALDRIAN P, KOLAŘÍK M, STURSOVÁ M, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition[J]. The ISME Journal, 2012, 6(2): 248-258. |
[16] | REN H W, FENG Y P, PEI J W, et al. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages[J]. Bioresource Technology, 2020, 307: 123238. |
[17] | GHANNOUM M A, JUREVIC R J, MUKHERJEE P K, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals[J]. PLoS Pathogens, 2010, 6(1): e1000713. |
[18] | 王平, 陈娟, 谢成俊, 等. 干旱地区覆盖方式对土壤养分及马铃薯产量的影响[J]. 中国土壤与肥料, 2021(4): 118-125. |
[19] | 杨鑫, 樊吴静, 唐洲萍, 等. 不同覆盖栽培对马铃薯根际土壤细菌多样性、酶活性及化学性状的影响[J]. 核农学报, 2021, 35(9): 2145-2153. |
[20] | JOERGENSEN R G, WICHERN F. Quantitative assessment of the fungal contribution to microbial tissue in soil[J]. Soil Biology and Biochemistry, 2008, 40(12): 2977-2991. |
[21] | 徐雪雪, 王东, 秦舒浩, 等. 沟垄覆膜连作马铃薯根际土壤真菌多样性分析[J]. 水土保持学报, 2015, 29(6): 301-306, 310. |
[22] | LI Y Y, PANG H C, HAN X F, et al. Buried straw layer and plastic mulching increase microflora diversity in salinized soil[J]. Journal of Integrative Agriculture, 2016, 15(7): 1602-1611. |
[23] | XUN W B, HUANG T, ZHAO J, et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities[J]. Soil Biology and Biochemistry, 2015, 90: 10-18. |
[24] | LI X Y, LEWIS E E, LIU Q Z, et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat[J]. Scientific Reports, 2016, 6: 30466. |
[25] | SÁNCHEZ-MARAÑÓN M, MIRALLES I, AGUIRRE-GARRIDO J F, et al. Changes in the soil bacterial community along a pedogenicgradient[J]. Scientific Reports, 2017, 7: 14593. |
[26] | 林青, 曾军, 史应武, 等. 聚对苯二甲酸-己二酸丁二酯生物降解膜对土壤酶活性的影响[J]. 新疆农业科学, 2021, 58(1): 125-132. |
[27] | BRONICK C J, LAL R. Soil structure and management: a review[J]. Geoderma, 2005, 124(1/2): 3-22. |
[28] | WILSON G W T, RICE C W, RILLIG M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscularmycorrhizal fungi: results from long-term field experiments[J]. Ecology Letters, 2009, 12(5): 452-461. |
[29] | NIELSEN S, MINCHIN T, KIMBER S, et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers[J]. Agriculture, Ecosystems & Environment, 2014, 191: 73-82. |
[30] | ROSENZWEIG N, TIEDJE J M, QUENSEN J F, et al. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses[J]. Plant Disease, 2012, 96(5): 718-725. |
[31] | MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100. |
[32] | XIE G X, KONG X L, KANG J L, et al. Community-level dormancy potential regulates bacterial beta-diversity succession during the co-composting of manure and crop residues[J]. Science of the Total Environment, 2021, 772: 145506. |
[33] | CAO J, WANG C, DOU Z X, et al. Hyphospheric impacts of earthworms and arbuscularmycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation[J]. Journal of Hazardous Materials, 2018, 341: 346-354. |
[34] | ZHANG X M, ZHU Y, LI J L, et al. Exploring dynamics and associations of dominant lignocellulose degraders in tomato stalk composting[J]. Journal of Environmental Management, 2021, 294: 113162. |
[35] | 马晓丹, 王凯, 李明栋, 等. 一株鞘氨醇杆菌LF-16的基因组测序与分析[J]. 基因组学与应用生物学, 2020, 39(2): 599-605. |
[36] | IMAM A, KUMAR SUMAN S, KANAUJIA P K, et al. Biological machinery for polycyclic aromatic hydrocarbons degradation: a review[J]. Bioresource Technology, 2022, 343: 126121. |
[37] | ZHOU Z J, LI Z Q, CHEN K, et al. Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system[J]. Soil, 2021, 7(2): 595-609. |
[38] | DENG X H, ZHANG N, SHEN Z Z, et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease[J]. Applied Soil Ecology, 2020, 147: 103364. |
[39] | OKAZAKI K, TSURUMARU H, HASHIMOTO M, et al. Community analysis-based screening of plant growth-promoting bacteria for sugar beet[J]. Microbes and Environments, 2021, 36(2): ME20137. |
[40] | WILHELM R C, SINGH R, ELTIS L D, et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing[J]. The ISME Journal, 2019, 13(2): 413-429. |
[41] | KANDASAMY S, LIU E Y R, PATTERSON G, et al. Introducing key microbes from high productive soil transforms native soil microbial community of low productive soil[J]. MicrobiologyOpen, 2019, 8(10): e895. |
[42] | MA G, ZHENG D, CAI Q, et al. Prevalence of Burkholderiapseudomallei in Guangxi, China[J]. Epidemiology and Infection, 2010, 138(1): 37-39. |
[43] | NION Y A, TOYOTA K. Suppression of bacterial wilt and Fusarium wilt by a Burkholderianodosa strain isolated from Kalimantan soils, Indonesia[J]. Microbes and Environments, 2008, 23(2): 134-141. |
[44] | 陆晓菊, 官会林, 张正芸, 等. 三七连作根际土壤微生物区系的16S rRNA系统遗传多样性[J]. 微生物学报, 2015, 55(2): 205-213. |
[45] | XU L X, YI M, YI H L, et al. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils[J]. World Journal of Microbiology & Biotechnology, 2017, 34(1): 8. |
[46] | 杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(6): 1256-1264. |
[47] | HÜNNINGHAUS M, DIBBERN D, KRAMER S, et al. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize[J]. Soil Biology and Biochemistry, 2019, 134: 122-130. |
[48] | SCHMIDT P A, BÁLINT M, GRESHAKE B, et al. Illumina metabarcoding of a soil fungal community[J]. Soil Biology and Biochemistry, 2013, 65: 128-132. |
[49] | MCGUIRE K L, PAYNE S G, PALMER M I, et al. Digging the New York City Skyline: soil fungal communities in green roofs and city parks[J]. PLoS One, 2013, 8(3): e58020. |
[50] | JIANG J L, YU M, HOU R P, et al. Changes in the soil microbial community are associated with the occurrence of Panaxquinquefolius L. root rot diseases[J]. Plant and Soil, 2019, 438(1/2): 143-156. |
[51] | BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398. |
[52] | SRIVASTAVA M P, SHARMA N. Antimicrobial activities of basidiocarp of some basidiomycetes strains against bacteria and fungi[J]. Journal of Mycology and Plant Pathology, 2011, 41(2): 332-334. |
[53] | REN L X, LOU Y S, SAKAMOTO K, et al. Effects of arbuscularmycorrhizal colonization on microbial community in rhizosphere soil and Fusarium wilt disease in tomato[J]. Communications in Soil Science and Plant Analysis, 2010, 41(11): 1399-1410. |
[54] | TIAN X L, YAO Y R, CHEN G H, et al. Suppression of Meloidogyne incognita by the endophytic fungus Acremoniumimplicatum from tomato root galls[J]. International Journal of Pest Management, 2014, 60(4): 239-245. |
[1] | 刘玲, 应利平, 朱明, 张明科. 3种菌剂及其组合对连作土壤状态和番茄生长的影响[J]. 浙江农业科学, 2023, 64(1): 165-169. |
[2] | 赵怡阳, 陶祥运, 张易旻, 王燕, 蒋位青. 酸模对Cd、Cu、Pb复合污染农田的修复潜力[J]. 浙江农业科学, 2022, 63(8): 1878-1882. |
[3] | 宋洋, 刘冬峰, 赵泉, 郭秀珠, 李发勇, 林绍生. 不同镁肥对柚园土壤和树体营养的影响[J]. 浙江农业科学, 2022, 63(6): 1275-1278. |
[4] | 唐榕, 梁培鑫, 郭晨荔, 郭睿, 何皇成, 王腾飞, 刘建国. 盐碱胁迫对油莎豆幼苗生长和生理性状的影响[J]. 浙江农业科学, 2022, 63(3): 528-533. |
[5] | 赵怡阳, 陶祥运, 张易旻, 王燕. 农田重金属污染土壤的植物修复工程研究[J]. 浙江农业科学, 2022, 63(2): 391-395. |
[6] | 罗国安, 郑友法, 刘贻, 吴家森, 叶子豪. 浙江四明山区花木种植对林地土壤质量的影响[J]. 浙江农业科学, 2022, 63(12): 2875-2878. |
[7] | 宁银中. 基于Meta分析的农田土壤Pb、Zn污染现状[J]. 浙江农业科学, 2022, 63(1): 179-185. |
[8] | 阮弋飞, 汪天娜, 章明奎. 河谷平原水田植茶酸化对耕层土壤化学和生物学性状的影响[J]. 浙江农业科学, 2021, 62(9): 1713-1715. |
[9] | 张迪, 李冬, 李俊营, 曾三军, 徐放达, 马文辉, 谷洁洁. 种植模式对土壤酶活性与烤烟光合特性的影响[J]. 浙江农业科学, 2021, 62(2): 250-252. |
[10] | 范利超, 颜鹏, 韩文炎. 土壤原位酶谱技术研究现状和趋势的文献计量分析[J]. 浙江农业科学, 2021, 62(1): 204-209. |
[11] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 余国庆, 姚英娟. 山药种植对土壤酶活性和养分含量的影响[J]. 浙江农业科学, 2020, 61(5): 920-923. |
[12] | 习盼, 徐驰, 刘茂松. 盐城滩涂湿地土壤酶活性特征及其影响因素[J]. 浙江农业科学, 2020, 61(10): 2150-2155. |
[13] | 赵静岩, 吴继业, 王强强, 葛利云, 叶盛, 彭路菊, 鲍根莲, 钟铭晨, 邓欢欢. 植物对河滨人工护坡基质上生物膜酶活的影响[J]. 浙江农业科学, 2020, 61(10): 2081-2084. |
[14] | 李文略, 熊晖, 张旭娟, 陈常理, 骆霞虹, 安霞, 朱关林, 金关荣. 麻地膜覆盖对绿芦笋产量和品质的影响[J]. 浙江农业科学, 2019, 60(5): 769-771. |
[15] | 梁晋刚, 栾颖, 宋新元, 张正光. 转基因抗虫玉米CM8101对根际土壤主要理化性质和功能酶活性的影响[J]. 浙江农业科学, 2019, 60(12): 2248-2252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||