浙江农业科学 ›› 2024, Vol. 65 ›› Issue (9): 2206-2213.DOI: 10.16178/j.issn.0528-9017.20230441
收稿日期:
2023-04-26
出版日期:
2024-09-11
发布日期:
2024-09-11
作者简介:
肖晨星(1996—),男,湖北荆门人,助理农艺师,硕士,从事新型肥料相关研究,E-mail:1077762718@qq.com。
基金资助:
XIAO Chenxing(), GAO Luyang, MA Zhiming
Received:
2023-04-26
Online:
2024-09-11
Published:
2024-09-11
摘要:
磷是植物生长和发育的重要限制因子之一,土壤中的可溶性无机磷酸盐极易被金属离子固定,形成难溶性磷或有机磷,造成低磷胁迫。为了适应低磷环境,植物体产生了包括形态学、生理生化反应在内的一系列适应机制。随着分子生物学技术的发展,大量参与植物体内磷动态平衡的基因如转运蛋白基因、PHR转录因子、SPX转录因子、miRNA等被相继克隆,其功能和作用机制也得到解析。这些基因相互作用形成了复杂的系统和局部磷信号调控网络,共同调控植物体内的磷稳态。文章回顾了低磷胁迫对植物生长发育的影响,综述国内外关于低磷胁迫分子机制及信号调控网络的研究进展。
中图分类号:
肖晨星, 高璐阳, 马志明. 植物对低磷胁迫的适应机制[J]. 浙江农业科学, 2024, 65(9): 2206-2213.
XIAO Chenxing, GAO Luyang, MA Zhiming. Mechanisms of plant adaptation to low phophorus stress[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2206-2213.
[1] | ARAI Y, SPARKS D L. Phosphate reaction dynamics in soils and soil components: a multiscale approach[M]// Advances in Agronomy. Amsterdam: Elsevier, 2007: 135-179. |
[2] | SHEN J B, YUAN L X, ZHANG J L, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997-1005. |
[3] | MENEZES-BLACKBURN D, GILES C, DARCH T, et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review[J]. Plant and Soil, 2018, 427(1): 5-16. |
[4] | ELSER J, BENNETT E. Phosphorus cycle: a broken biogeochemical cycle[J]. Nature, 2011, 478(7367): 29-31. |
[5] | ZHOU M, ZHU S N, MO X H, et al. Proteomic analysis dissects molecular mechanisms underlying plant responses to phosphorus deficiency[J]. Cells, 2022, 11(4): 651. |
[6] | 舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究[D]. 武汉: 华中农业大学, 2021. |
[7] | 潘晓华, 刘水英, 李锋, 等. 低磷胁迫对不同水稻品种幼苗光合作用的影响[J]. 作物学报, 2003, 29(5): 770-774. |
[8] | 郭延平, 陈屏昭, 张良诚, 等. 不同供磷水平对温州蜜柑叶片光合作用的影响[J]. 植物营养与肥料学报, 2002, 8(2): 186-191. |
[9] | CHU S S, LI H Y, ZHANG X Q, et al. Physiological and proteomics analyses reveal low-phosphorus stress affected the regulation of photosynthesis in soybean[J]. International Journal of Molecular Sciences, 2018, 19(6): 1688. |
[10] | GOLDSTEIN A H, MAYFIELD S P, DANON A, et al. Phosphate starvation inducible metabolism in Lycopersicon esculentum[J]. Plant Physiology, 1989, 91(1): 175-182. |
[11] | LYNCH J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1): 7-13. |
[12] | BATES T R, LYNCH J P. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae)[J]. American Journal of Botany, 2000, 87(7): 958-963. |
[13] | 王树起, 韩晓增, 严君, 等. 缺磷胁迫对大豆根系形态和氮磷吸收积累的影响[J]. 土壤通报, 2010, 41(3): 644-650. |
[14] | 李海波, 夏铭, 吴平. 低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J]. 植物学报, 2001, 43(11): 1154-1160. |
[15] | 孙海国, 张福锁. 缺磷胁迫下的小麦根系形态特征研究[J]. 应用生态学报, 2002, 13(3): 295-299. |
[16] | CONG W F, SURIYAGODA L D B, LAMBERS H. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes[J]. Trends in Plant Science, 2020, 25(10): 967-975. |
[17] | 廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异[J]. 植物学报, 2000, 42(2): 158-163. |
[18] | 杨青, 张一, 周志春, 等. 低磷胁迫下不同种源马尾松的根构型与磷效率[J]. 应用生态学报, 2012, 23(9): 2339-2345. |
[19] | 范伟国, 杨洪强, 韩小娇. 低磷胁迫下平邑甜茶根构型与磷吸收特性的变化[J]. 园艺学报, 2007, 34(6): 1341-1346. |
[20] | PEÑALOZA E, MUÑOZ G, SALVO-GARRIDO H, et al. Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin[J]. Journal of Experimental Botany, 2005, 56(409): 145-153. |
[21] | 孟志斌. 一氧化氮和生长素在白羽扇豆排根形成中的作用机制[D]. 杭州: 浙江大学, 2012. |
[22] | 陈磊, 王盛锋, 刘自飞, 等. 低磷条件下植物根系形态反应及其调控机制[J]. 中国土壤与肥料, 2011(6): 1-12. |
[23] | ASLAM M M, KARANJA J K, YUAN W, et al. Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency[J]. Plant Physiology and Biochemistry, 2021, 166: 531-539. |
[24] | XU W F, ZHANG Q, YUAN W, et al. The genome evolution and low-phosphorus adaptation in white lupin[J]. Nature Communications, 2020, 11: 1069. |
[25] | VAN’T PADJE A, WERNER G D A, KIERS E T. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability[J]. The New Phytologist, 2021, 229(5): 2933-2944. |
[26] | JIANG F Y, ZHANG L, ZHOU J C, et al. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. The New Phytologist, 2021, 230(1): 304-315. |
[27] | REICHERT T, RAMMIG A, FUCHSLUEGER L, et al. Plant phosphorus-use and-acquisition strategies in Amazonia[J]. The New Phytologist, 2022, 234(4): 1126-1143. |
[28] | HAN M G, CHEN Y, LI R, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space[J]. The New Phytologist, 2022, 234(3): 837-849. |
[29] | XIE B X, CHEN Q Q, LU X, et al. Proton exudation mediated by GmVP2 has widespread effects on plant growth, remobilization of soil phosphorus, and the structure of the rhizosphere microbial community[J]. Journal of Experimental Botany, 2023, 74(3): 1140-1156. |
[30] | LAMBERS H, SHANE M W, CRAMER M D, et al. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits[J]. Annals of Botany, 2006, 98(4): 693-713. |
[31] | WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 680-694. |
[32] | 魏铭, 王鑫伟, 陈博, 等. 植物紫色酸性磷酸酶基因家族功能研究进展[J]. 植物学报, 2019, 54(1): 93-101. |
[33] | 张丽梅, 郭再华, 张琳, 等. 缺磷对不同耐低磷玉米基因型酸性磷酸酶活性的影响[J]. 植物营养与肥料学报, 2015, 21(4): 898-910. |
[34] | 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究[J]. 应用生态学报, 2002, 13(3): 379-381. |
[35] | 赵文杰, 张丽静, 畅倩, 等. 低磷胁迫下豆科植物有机酸分泌研究进展[J]. 草业科学, 2011, 28(6): 1207-1213. |
[36] | 魏丹, 杨华薇, 陈延华, 等. 有机酸对土壤磷的活化利用研究进展[J]. 农业环境科学学报, 2022, 41(7): 1391-1399. |
[37] | 叶思诚. 油茶适应低磷胁迫的根系生理响应[D]. 长沙: 中南林业科技大学, 2013. |
[38] | 李德华, 向春雷, 姜益泉, 等. 低磷胁迫下水稻不同品种根系有机酸分泌的差异[J]. 中国农学通报, 2005, 21(11): 186-188, 201. |
[39] | 田中民, 李春俭, 王晨, 等. 缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较[J]. 植物生理学报, 2000, 26(4): 317-322. |
[40] | OLDROYD G E D, LEYSER O. A plant's diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196. |
[41] | MIURA K, LEE J, GONG Q Q, et al. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation[J]. Plant Physiology, 2011, 155(2): 1000-1012. |
[42] | ZHANG Y J, LYNCH J P, BROWN K M. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development[J]. Journal of Experimental Botany, 2003, 54(391): 2351-2361. |
[43] | 潘瑶, 郑小东, 张振华, 等. 磷胁迫和激素对烟草根系发育的影响及机理研究进展[J]. 湖南农业科学, 2012(4): 39-41. |
[44] | SCHEIBLE W R, ROJAS-TRIANA M. Sensing, signalling, and control of phosphate starvation in plants: molecular players and applications[M]//Plaxton W C, Lambers H. Annual Plant Reviews. John Wiley & Sons, 2015. |
[45] | OLDROYD G E D, LEYSER O. A plant's diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196. |
[46] | CHU S S, ZHANG X Q, YU K Y, et al. Genome-wide analysis reveals dynamic epigenomic differences in soybean response to low-phosphorus stress[J]. International Journal of Molecular Sciences, 2020, 21(18): 6817. |
[47] | SCHACHTMAN D P, SHIN R. Nutrient sensing and signaling: NPKS[J]. Annual Review of Plant Biology, 2007, 58: 47-69. |
[48] | YE Q, WANG H, SU T, et al. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis[J]. The Plant Cell, 2018, 30(5): 1062-1076. |
[49] | NUSSAUME L, KANNO S, JAVOT H, et al. Phosphate import in plants: focus on the PHT1 transporters[J]. Frontiers in Plant Science, 2011, 2: 83. |
[50] | LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95-123. |
[51] | 丁广大, 陈水森, 石磊, 等. 植物耐低磷胁迫的遗传调控机理研究进展[J]. 植物营养与肥料学报, 2013, 19(3): 733-744. |
[52] | RAGHOTHAMA K G. Phosphate transport and signaling[J]. Current Opinion in Plant Biology, 2000, 3(3): 182-187. |
[53] | MUDGE S R, RAE A L, DIATLOFF E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. The Plant Journal, 2002, 31(3): 341-353. |
[54] | KARTHIKEYAN A S, VARADARAJAN D K, MUKATIRA U T, et al. Regulated expression of Arabidopsis phosphate transporters[J]. Plant Physiology, 2002, 130(1): 221-233. |
[55] | SHIN H, SHIN H S, DEWBRE G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. The Plant Journal, 2004, 39(4): 629-642. |
[56] | NAGARAJAN V K, JAIN A, POLING M D, et al. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling[J]. Plant Physiology, 2011, 156(3): 1149-1163. |
[57] | LAPIS-GAZA H R, JOST R, FINNEGAN P M. Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate[J]. BMC Plant Biology, 2014, 14: 334. |
[58] | SUN S B, GU M, CAO Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiology, 2012, 159(4): 1571-1581. |
[59] | WU P, XU J M. Does OsPHR2, central pi-signaling regulator, regulate some unknown factors crucial for plant growth?[J]. Plant Signaling & Behavior, 2010, 5(6): 712-714. |
[60] | AI P H, SUN S B, ZHAO J N, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809. |
[61] | DONG Z, LI W, LIU J, et al. The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth[J]. Scientific Reports, 2019, 9: 5408. |
[62] | WANG Y T, BAO X Z, LI S S. Effects of arbuscular mycorrhizal fungi on rice growth under different flooding and shading regimes[J]. Frontiers in Microbiology, 2021, 12: 756752. |
[63] | BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J]. PLoS Genetics, 2010, 6(9): e1001102. |
[64] | SUN L C, SONG L, ZHANG Y, et al. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation[J]. Plant Physiology, 2015, 170(1): 499-514. |
[65] | PAZ-ARES J, PUGA M I, ROJAS-TRIANA M, et al. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications[J]. Molecular Plant, 2022, 15(1): 104-124. |
[66] | ROUACHED H, SECCO D, ARPAT B, et al. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis[J]. BMC Plant Biology, 2011, 11: 19. |
[67] | PUGA M I, ROJAS-TRIANA M, DE LORENZO L, et al. Novel signals in the regulation of Pi starvation responses in plants: facts and promises[J]. Current Opinion in Plant Biology, 2017, 39: 40-49. |
[68] | PUGA M I, MATEOS I, CHARUKESI R, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14947-14952. |
[69] | ROUACHED H, STEFANOVIC A, SECCO D, et al. Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis[J]. The Plant Journal, 2011, 65(4): 557-570. |
[70] | PARK S H, JEONG J S, HUANG C H, et al. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis[J]. The New Phytologist, 2023, 237(4): 1215-1228. |
[71] | KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nature Reviews Genetics, 2010, 11: 597-610. |
[72] | SUN X, LIN L, SUI N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding[J]. Molecular Biology Reports, 2019, 46(1): 1447-1457. |
[73] | ISLAM W, TAUQEER A, WAHEED A, et al. MicroRNA mediated plant responses to nutrient stress[J]. International Journal of Molecular Sciences, 2022, 23(5): 2562. |
[74] | WANG R, FANG Y N, WU X M, et al. The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus[J]. Plant Physiology, 2020, 183(4): 1681-1695. |
[75] | FUJII H, CHIOU T J, LIN S, et al. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Current Biology, 2005, 15(22): 2038-2043. |
[76] | BARI R, DATT PANT B, STITT M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988-999. |
[77] | KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genetics, 2011, 7(3): e1002021. |
[78] | XU F Q, XUE H W. The ubiquitin-proteasome system in plant responses to environments[J]. Plant, Cell & Environment, 2019, 42(10): 2931-2944. |
[79] | KUREPA J, WALKER J M, SMALLE J, et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress[J]. The Journal of Biological Chemistry, 2003, 278(9): 6862-6872. |
[80] | MIURA K, RUS A, SHARKHUU A, et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(21): 7760-7765. |
[81] | 田文昊. 拟南芥STOP1蛋白协同氮磷营养的分子机制研究[D]. 杭州: 浙江大学, 2021. |
[82] | HU B, JIANG Z M, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5: 401-413. |
[83] | HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47: 834-838. |
[84] | LV Q D, ZHONG Y J, WANG Y G, et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. The Plant Cell, 2014, 26(4): 1586-1597. |
[85] | HU B, CHU C C. Nitrogen-phosphorus interplay: old story with molecular tale[J]. The New Phytologist, 2020, 225(4): 1455-1460. |
[86] | TIAN W H, YE J Y, CUI M Q, et al. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis[J]. Molecular Plant, 2021, 14(9): 1554-1568. |
[87] | BATJES N H. A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling[J]. Soil Use and Management, 1997, 13(1): 9-16. |
[88] | VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. The New Phytologist, 2003, 157(3): 423-447. |
[89] | YAN X L, WU P, LING H Q, et al. Plant nutriomics in China: an overview[J]. Annals of Botany, 2006, 98(3): 473-482. |
[90] | BAZIN J, BAERENFALLER K, GOSAI S J, et al. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): E10018-E10027. |
[91] | CHU S S, ZHANG X Q, YU K Y, et al. Genome-wide analysis reveals dynamic epigenomic differences in soybean response to low-phosphorus stress[J]. International Journal of Molecular Sciences, 2020, 21(18): 6817. |
[1] | 周田田, 杨文杰. 调环酸钙对花椰菜幼苗生长及徒长防控效果的影响[J]. 浙江农业科学, 2024, 65(5): 1153-1158. |
[2] | 吕春发, 严锐, 陈杭君, 杨银爱. 子莲保鲜加工技术研究进展[J]. 浙江农业科学, 2022, 63(8): 1829-1832. |
[3] | 张鸿锦, 焦云, 舒巧云. 不同采收期对设施栽培下杂柑果实品质及光合作用的影响[J]. 浙江农业科学, 2022, 63(7): 1478-1481. |
[4] | 周星, 王振, 徐年龙, 周娜娜, 王升. 减氮后喷叶面肥在水稻南粳2728上的应用[J]. 浙江农业科学, 2022, 63(3): 436-439. |
[5] | 章建红, 沈登锋, 洪春桃, 焦云, 魏斌, 潘存德. 盐胁迫对薄壳山核桃幼苗光合作用及叶绿体超微结构的影响[J]. 浙江农业科学, 2022, 63(11): 2569-2574. |
[6] | 洪春桃, 沈登锋, 魏斌, 章建红. 不同遮阴处理对华重楼生长和光合作用的影响[J]. 浙江农业科学, 2020, 61(9): 1772-1775. |
[7] | 李萌, 顾寅钰, 梁晓艳, 张海洋, 衣葵花, 王向誉, 郭洪恩. 沙土灭菌对盐地碱蓬种子萌发、幼苗生长及根系形态的影响[J]. 浙江农业科学, 2020, 61(9): 1816-1818. |
[8] | 王佳淇, 韦晓桐, 何莹钰, 汤佳雯, 王仕琪, 朱友银, 汤腾跃, 廖芳蕾. LED补光系统对设施园艺作物的影响[J]. 浙江农业科学, 2020, 61(5): 950-954. |
[9] | 古咸彬, 郭书艳, 黄武权, 倪鑫太, 谢鸣, 张慧琴. 设施栽培对蓝莓光合作用与果实品质的影响[J]. 浙江农业科学, 2020, 61(10): 2033-2036. |
[10] | 胡利泉, 朱奇彪. 浅谈农业互联网应用技术培训的发展与展望[J]. 浙江农业科学, 2019, 60(7): 1256-1258. |
[11] | 李志强, 刘洪亮, 田铃枝, 陈虎, 刘晓伟, 陈红梅, 吕军, 王磊. 反光膜对北疆滴灌葡萄生长、光合作用及品质的影响[J]. 浙江农业科学, 2019, 60(11): 2034-2038. |
[12] | 魏国余, 戴文君, 方小荣, 杨梅, 王家妍. 珍稀濒危植物灰木莲的研究现状及展望[J]. 浙江农业科学, 2017, 58(9): 1596-1599. |
[13] | 王俊, 赵宇, 张建会, 余祥文, 陈志华, 冯文强. 不同基因型烤烟大田前期抗旱指标分析[J]. 浙江农业科学, 2017, 58(1): 27-30. |
[14] | 郝德荣1,冒宇翔1,陈国清1,2,陆虎华1,石明亮1,黄小兰1,薛林1,2*. 我国鲜食甜糯玉米育种现状与展望[J]. 浙江农业科学, 2016, 1(4): 478-. |
[15] | 张华峰1,黄芸萍1,邢乃林1,王毓洪1*,符长焕2,李林章1. 宁波市水生蔬菜产业发展概况 [J]. 浙江农业科学, 2016, 1(10): 1595-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||