浙江农业科学 ›› 2025, Vol. 66 ›› Issue (3): 742-749.DOI: 10.16178/j.issn.0528-9017.20240489
收稿日期:
2024-06-17
出版日期:
2025-03-11
发布日期:
2025-04-02
通讯作者:
李俐俐
作者简介:
李俐俐,教授,博士,研究方向为分析化学研究,E-mail: lilizksky@163.com。基金资助:
YANG Xingdong1(), QU Yang1, HU Xiaofei2, LI Lili1,*(
)
Received:
2024-06-17
Online:
2025-03-11
Published:
2025-04-02
Contact:
LI Lili
摘要:
氧氟沙星(ofloxacin, OFLX)是一种主要的氟喹诺酮类(FQs)药物,因其抗菌性好、价格低廉而常被用于人类和动物的医疗保健中,但其残留物对人类健康造成的风险巨大,引起人们的高度重视。鉴于OFLX在食品和环境中有较多残留,建立对OFLX的即时检测方法势在必行。与传统的色谱、光谱检测技术相比,免疫分析法在特异性、检测效率、现场适用性和前处理的简便性等方面具有突出优势。该文综述了OFLX抗体的制备和免疫分析技术在OFLX残留检测中的应用现状,比较了酶联免疫法、免疫层析法、荧光免疫法、免疫传感器法、生物条形码免疫分析法、核酸适配体技术等方法的优缺点,并对OFLX免疫检测方法的发展趋势进行了展望,以期为该抗生素快速检测方法的建立和应用提供参考。
中图分类号:
杨兴东, 曲扬, 胡骁飞, 李俐俐. 免疫分析方法在氧氟沙星残留检测中的研究进展[J]. 浙江农业科学, 2025, 66(3): 742-749.
YANG Xingdong, QU Yang, HU Xiaofei, LI Lili. Research progress of immunoassay methods in the detection of ofloxacin residues[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 742-749.
合成免疫原的 方法 | 免疫动物 | 抗体类型 | 半数抑制浓度(IC50)/ (ng·mL-1) | 检测限/ (ng·mL-1) | 参考文献 |
---|---|---|---|---|---|
碳二亚胺法 | BALB/c小鼠 | mAb | 14.580 | 1.590 | [ |
NHS酯法 | 新西兰白兔 | pAb | 0.500 (R, S-OFLX) | 0.300~0.400 | [ |
3.100 (S-OFLX) | |||||
碳二亚胺法 | BALB/c小鼠 | mAb | 0.696 | 0.200 | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 7.000 | 0.500 | [ |
碳二亚胺法 | BALB/c小鼠 | pAb | 19.970 | 0.240 | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 12.430 (R-OFLX) 0.650 (S-OFLX) | — | [ |
NHS酯法 | 新西兰白兔 | pAb | 0.430 (R-OFLX) 0.300(S-OFLX) | — | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 0.893 | 0.151 | [ |
NHS酯法 | 新西兰白兔 | pAb | 1.840 | — | [ |
表1 氧氟沙星抗体的制备
Table 1 Preparation of antibodies against OFLX
合成免疫原的 方法 | 免疫动物 | 抗体类型 | 半数抑制浓度(IC50)/ (ng·mL-1) | 检测限/ (ng·mL-1) | 参考文献 |
---|---|---|---|---|---|
碳二亚胺法 | BALB/c小鼠 | mAb | 14.580 | 1.590 | [ |
NHS酯法 | 新西兰白兔 | pAb | 0.500 (R, S-OFLX) | 0.300~0.400 | [ |
3.100 (S-OFLX) | |||||
碳二亚胺法 | BALB/c小鼠 | mAb | 0.696 | 0.200 | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 7.000 | 0.500 | [ |
碳二亚胺法 | BALB/c小鼠 | pAb | 19.970 | 0.240 | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 12.430 (R-OFLX) 0.650 (S-OFLX) | — | [ |
NHS酯法 | 新西兰白兔 | pAb | 0.430 (R-OFLX) 0.300(S-OFLX) | — | [ |
碳二亚胺法 | BALB/c小鼠 | mAb | 0.893 | 0.151 | [ |
NHS酯法 | 新西兰白兔 | pAb | 1.840 | — | [ |
方法 | 优点 | 缺点 | 特点 |
---|---|---|---|
酶联免疫法 | 前处理简单、成本较低、设备投资少、应用广泛 | 重复性较差,干扰因素多,易出现假阳性结果 | 酶标记,酶促反应 |
荧光免疫法 | 操作简便,灵敏度较高、安全 | 易受背景干扰、仪器要求高、结果不便长期保存 | 荧光标记 |
胶体金免疫分析法 | 无需前处理、现场快速筛选、结果易判定 | 肉眼观察颜色变化只能定性判定,定量检测需用读条仪 | 胶体金标记 |
免疫传感器法 | 选择性好,灵敏度较高、快速、自动化检测 | 制备复杂、难度大,检测元件要求高 | 传感器信号的放大和识别 |
生物条形码免疫分析法 | 操作简便、灵敏度高、结果准确 | 制备过程困难,所需设备昂贵 | 多重信号放大,抗体为特异性识别元件 |
核酸适配体技术 | 亲和力和特异性强,易于制备和修饰,应用范围广 | 筛选过程繁杂,成功率不高 | 与靶分子的特异性结合 |
表2 OFLX不同免疫分析方法的特点及优缺点
Table 2 Characteristics, advantages and disadvantages of different immunoassay methods for OFLX
方法 | 优点 | 缺点 | 特点 |
---|---|---|---|
酶联免疫法 | 前处理简单、成本较低、设备投资少、应用广泛 | 重复性较差,干扰因素多,易出现假阳性结果 | 酶标记,酶促反应 |
荧光免疫法 | 操作简便,灵敏度较高、安全 | 易受背景干扰、仪器要求高、结果不便长期保存 | 荧光标记 |
胶体金免疫分析法 | 无需前处理、现场快速筛选、结果易判定 | 肉眼观察颜色变化只能定性判定,定量检测需用读条仪 | 胶体金标记 |
免疫传感器法 | 选择性好,灵敏度较高、快速、自动化检测 | 制备复杂、难度大,检测元件要求高 | 传感器信号的放大和识别 |
生物条形码免疫分析法 | 操作简便、灵敏度高、结果准确 | 制备过程困难,所需设备昂贵 | 多重信号放大,抗体为特异性识别元件 |
核酸适配体技术 | 亲和力和特异性强,易于制备和修饰,应用范围广 | 筛选过程繁杂,成功率不高 | 与靶分子的特异性结合 |
检测类型 | 材料 | 基质 | 线性范围/ (ng·mL-1) | 检测限/ (ng·mL-1) | 参考文献 |
---|---|---|---|---|---|
电化学 | PPy-Au nanocluster | PBS | 0.08~410.00 | 0.03 | [ |
电化学 | multi-enzyme-AuNFs | HEPES | 0.26~25.60(S-OFL) | 0.15 | [ |
0.37~12.80 (R-OFL) | 0.30 | ||||
光学 | UCNPs (β-NaYF4/Yb3+/Er3+) | PBS | — | 3.61 | [ |
光学 | nanoMIPs (APTMS) | 河水 牛奶 | — | 57.46(河水) 46.98(牛奶) | [ |
压电 | MWCNTs | 牛奶 | 30.0~650.0 | 9.00 | [ |
表3 免疫传感器在氧氟沙星残留检测中的应用
Table 3 Application of immunosensors in the detection of residues of ofloxacin
检测类型 | 材料 | 基质 | 线性范围/ (ng·mL-1) | 检测限/ (ng·mL-1) | 参考文献 |
---|---|---|---|---|---|
电化学 | PPy-Au nanocluster | PBS | 0.08~410.00 | 0.03 | [ |
电化学 | multi-enzyme-AuNFs | HEPES | 0.26~25.60(S-OFL) | 0.15 | [ |
0.37~12.80 (R-OFL) | 0.30 | ||||
光学 | UCNPs (β-NaYF4/Yb3+/Er3+) | PBS | — | 3.61 | [ |
光学 | nanoMIPs (APTMS) | 河水 牛奶 | — | 57.46(河水) 46.98(牛奶) | [ |
压电 | MWCNTs | 牛奶 | 30.0~650.0 | 9.00 | [ |
[1] | WU Y, ZHOU Y, LONG H C, et al. A novel Zn/Eu-MOF for the highly sensitive, reversible and visualized sensing of ofloxacin residues in pork, beef and fish[J]. Food Chemistry, 2023, 422: 136250. |
[2] | TONG C L, ZHUO X J, GUO Y. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7303-7309. |
[3] | VAKH C, POCHIVALOV A, ANDRUCH V, et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples[J]. Analytica Chimica Acta, 2016, 907: 54-59. |
[4] | TIMOFEEVA I, TIMOFEEV S, MOSKVIN L, et al. A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat[J]. Analytica Chimica Acta, 2017, 949: 35-42. |
[5] | ZHANG X D, WANG C C, YANG L Y, et al. Determination of eight quinolones in milk using immunoaffinity microextraction in a packed syringe and liquid chromatography with fluorescence detection[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2017, 1064: 68-74. |
[6] | VAN HOI B, VU C T, PHUNG-THI L A, et al. Determination of pharmaceutical residues by UPLC-MS/MS method: validation and application on surface water and hospital wastewater[J]. Journal of Analytical Methods in Chemistry, 2021, 2021(1): 6628285. |
[7] | CHANG L M, DU S S, WU X J, et al. Analysis, occurrence and exposure evaluation of antibiotic and anthelmintic residues in whole cow milk from China[J]. Antibiotics, 2023, 12(7): 1125. |
[8] | 王锦, 叶开晓, 田艳, 等. 固相萃取-高效液相色谱-串联质谱法同时测定环境水样中22种抗生素[J]. 色谱, 2023, 41(3): 241-249. |
[9] | 冯军军, 姜海云, 王静, 等. QuEChERS-高效液相色谱-串联质谱法同时测定豆芽中40种植物生长调节剂、杀菌剂、杀虫剂和抗生素类药物残留[J]. 色谱, 2022, 40(9): 843-853. |
[10] | XU S K, YANG J X, HUSSEIN R, et al. Heterogeneous ozonation of ofloxacin using MnOx-CeOx/γ-Al2O3 as a catalyst: performances, degradation kinetics and possible degradation pathways[J]. Water Environment Research, 2021, 93(8): 1361-1369. |
[11] | YU Z N, HUANG L, ZHANG Z M, et al. Simultaneous and accurate quantification of multiple antibiotics in aquatic samples by surface-enhanced Raman scattering using a Ti3C2Tx/DNA/Ag membrane substrate[J]. Analytical Chemistry, 2021, 93(38): 13072-13079. |
[12] | 王翠月, 陈大伟, 马丽娜, 等. 动物源性食品中氟喹诺酮类药物残留现状和检测方法研究进展[J]. 中国家禽, 2022, 44(12): 92-97. |
[13] | 孙敏君, 高雪, 徐阳鑫, 等. 食品中氟喹诺酮类药物残留的快速检测研究进展[J]. 食品科学, 2022, 43(5): 383-391. |
[14] | 张运尚, 杜加茹, 王伟东, 等. 氟喹诺酮类药物残留限量及检测技术研究进展[J]. 中国畜牧杂志, 2021, 57(4): 39-44. |
[15] | 王勇, 龚勇, 卢明华. 氟喹诺酮类药物残留检测方法的研究进展[J]. 中国畜牧兽医, 2017, 44(8): 2509-2516. |
[16] | 杨兴东, 段宇莹, 李琳. 己烷雌酚免疫原的合成及其鼠源抗血清的制备[J]. 中国生物制品学杂志, 2019, 32(7): 798-802. |
[17] | 栗慧, 薛瑛辉, 冯亚宁, 等. 氧氟沙星单克隆抗体的制备及生物条形码检测技术的研究[J]. 食品安全质量检测学报, 2023, 14(9): 169-176. |
[18] | BYZOVA N A, SMIMOVA N I, ZHERDEV A V, et al. Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold[J]. Talanta, 2014, 119: 125-132. |
[19] | 董李学, 冯才伟, 冯静, 等. 抗氧氟沙星单克隆抗体的制备及ELISA快速试剂盒的初步研制[J]. 中国畜牧兽医, 2014, 41(8): 90-94. |
[20] | 孙武勇, 屈凌波, 王云龙, 等. 氧氟沙星ELISA检测方法的建立[J]. 中国药科大学学报, 2007, 38(3): 233-235. |
[21] | 李彬彬, 侯玉泽, 邓瑞广, 等. 氧氟沙星人工抗原的合成与多克隆抗体的制备[J]. 食品科技, 2009, 34(9): 6-10. |
[22] | MU H T, LEI H T, WANG B L, et al. Molecular modeling application on hapten epitope prediction: an enantioselective immunoassay for ofloxacin optical isomers[J]. Journal of Agricultural and Food Chemistry, 2014, 62(31): 7804-7812. |
[23] | MU H T, WANG B L, XU Z L, et al. Stereospecific recognition and quantitative structure-activity relationship between antibodies and enantiomers: ofloxacin as a model hapten[J]. Analyst, 2015, 140(4): 1037-1045. |
[24] | HE K, DU X J, SHENG W, et al. Crystal structure of the fab fragment of an anti-ofloxacin antibody and exploration of its specific binding[J]. Journal of Agricultural and Food Chemistry, 2016, 64(12): 2627-2634. |
[25] | PINACHO D G, SÁNCHEZ-BAEZA F, MARCO M P. Molecular modeling assisted hapten design to produce broad selectivity antibodies for fluoroquinolone antibiotics[J]. Analytical Chemistry, 2012, 84(10): 4527-4534. |
[26] | LIU J, ZHANG H C, DUAN C F, et al. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51(11): 742-750. |
[27] | 张运尚, 王方雨, 胡曼, 等. 氧氟沙星单链抗体的制备及间接竞争ELISA的建立[J]. 黑龙江畜牧兽医, 2021(4): 116-123, 159. |
[28] | 何扩, 张秀媛, 杜欣军, 等. 氧氟沙星单链抗体库的构建、筛选及蛋白结构模拟[J]. 现代食品科技, 2014, 30(3): 108-113. |
[29] | TAO X Q, CHEN M, JIANG H Y, et al. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment[J]. Analytical and Bioanalytical Chemistry, 2013, 405(23): 7477-7484. |
[30] | HUET A C, CHARLIER C, TITTLEMIER S A, et al. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(8): 2822-2827. |
[31] | ZHANG B, LANG Y H, GUO B W, et al. Indirect competitive enzyme-linked immunosorbent assay based on broad-spectrum antibody for simultaneous determination of thirteen fluoroquinolone antibiotics in Rana catesbeianus[J]. Foods, 2023, 12(13): 2530. |
[32] | TARANOVA N A, BERLINA A N, ZHERDEV A V, et al. 'Traffic light' immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk[J]. Biosensors and Bioelectronics, 2015, 63: 255-261. |
[33] | LEI X L, GUO L L, XU L G, et al. Fluorescent strip sensor for rapid and ultrasensitive determination of fluoroquinolones in fish and milk[J]. Analyst, 2023, 148(2): 381-390. |
[34] | HUANG N, SHENG W, BAI D M, et al. Multiplex bio-barcode based fluorometric immunoassay for simultaneous determination of zearalenone, fumonisin B1, ochratoxin A, and aflatoxin B1 in cereals[J]. Food Control, 2023, 150: 109759. |
[35] | ZANG S, LIU Y J, LIN M H, et al. A dual amplified electrochemical immunosensor for ofloxacin: polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label[J]. Electrochimica Acta, 2013, 90: 246-253. |
[36] | HE Z Y, ZANG S, LIU Y J, et al. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer[J]. Biosensors and Bioelectronics, 2015, 73: 85-92. |
[37] | NAMPI P P, VAKUROV A, SAHA S, et al. Surface modified hexagonal upconversion nanoparticles for the development of competitive assay for biodetection[J]. Biomaterials Advances, 2022, 136: 212763. |
[38] | SULLIVAN M V, HENDERSON A, HAND R A, et al. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk[J]. Analytical and Bioanalytical Chemistry, 2022, 414(12): 3687-3696. |
[39] | SHINKO E I, FARAFONOVA O V, SHANIN I A, et al. Determination of the fluoroquinolones levofloxacin and ciprofloxacin by a piezoelectric immunosensor modified with multiwalled carbon nanotubes (MWCNTs)[J]. Analytical Letters, 2022, 55(7): 1164-1177. |
[40] | PIRO B, SHI S, REISBERG S, et al. Comparison of electrochemical immunosensors and aptasensors for detection of small organic molecules in environment, food safety, clinical and public security[J]. Biosensors, 2016, 6(1): 7. |
[41] | HUANG Y K, WANG C, WEI Q M, et al. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (Ⅲ) luminescence enhancement for ofloxacin detection in food[J]. Talanta, 2021, 235: 122783. |
[42] | BEN AISSA S, MASTOURI M, CATANANTE G, et al. Investigation of a truncated aptamer for ofloxacin detection using a rapid FRET-based apta-assay[J]. Antibiotics, 2020, 9(12): 860. |
[43] | YI H Y, YAN Z Y, WANG L M, et al. Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I[J]. Mikrochimica Acta, 2019, 186(10): 668. |
[44] | 许高鼎, 张丹枫, 熊建华, 等. 核酸适配体结合胶体金比色法检测氧氟沙星[J]. 江西农业大学学报, 2022, 44(6): 1538-1545. |
[45] | 柳爱春, 刘超, 张乐, 等. 免疫胶体金法快速检测水产品中喹诺酮类药物[J]. 浙江农业学报, 2018, 30(2): 290-297. |
[1] | 叶伟成, 华炯钢, 倪征, 云涛, 陈柳, 朱寅初, 张存. 不同鸭坦布苏病毒病疫苗免疫效果的比较[J]. 浙江农业科学, 2022, 63(7): 1542-1544. |
[2] | 叶伟成, 云涛, 朱寅初, 倪征, 陈柳, 华炯钢, 张存. 基于番鸭细小病毒VP3蛋白的间接ELISA方法建立[J]. 浙江农业科学, 2022, 63(11): 2740-2745. |
[3] | 梁真真, 徐海圣. 中华鳖白细胞介素17原核表达及多克隆抗体制备[J]. 浙江农业科学, 2020, 61(2): 371-373. |
[4] | 荣雪路, 丁国伟, 魏荣荣, 李琛, 李甜甜. 重组鸡传染性法氏囊病毒VP2蛋白在多联疫苗中的免疫效果评价[J]. 浙江农业科学, 2020, 61(11): 2389-2391. |
[5] | 亓丽红, 黄兵, 吴家强, 宋玲玲, 王友令, 马秀丽, 于可响, 刘涛, 艾武, 徐怀英. 鸡传染性支气管炎病毒N蛋白的表达及ELISA诊断试剂盒的研制与应用[J]. 浙江农业科学, 2018, 59(5): 866-870. |
[6] | 吴婷, 刘跃生, 徐雅萍, 邱寒峰, 俞乾挺, 翟汉平, 严羽. 湖羊羊痘疫苗免疫抗体消长规律分析[J]. 浙江农业科学, 2017, 58(4): 709-710. |
[7] | 张保平, 李娜, 高惠林, 王前光, 任国冀, 童学勤. 抗豪猪大肠埃希菌卵黄抗体的制备及抑菌性研究[J]. 浙江农业科学, 2017, 58(3): 484-488. |
[8] | 赵芸, 张乐, 柳爱春. 免疫分析技术在兽药残留检测中的应用[J]. 浙江农业科学, 2017, 58(3): 489-492. |
[9] | 王晓阳;金明升;余旭平. 规模猪场伪狂犬弱毒疫苗滴鼻免疫的效果[J]. , 2012, 1(4): 0-581. |
[10] | 付媛;卢福庄;杨玉焕;俞国乔;顾昀;冯尚连;石团员;贾会娟;张雪娟. 免疫层析试纸条监测实验感染日本血吸虫病牛治疗前后抗体消长[J]. , 2012, 1(12): 0-1714. |
[11] | 杜喜忠;胡旭进;楼芳芳;章萧君;项玉燕. 猪瘟和蓝耳病母源抗体消长规律及疫苗免疫的干扰作用[J]. , 2010, 1(05): 1118-1120. |
[12] | 张存;王一成;孙小梅;俞元明;袁秀芳;叶伟成;刘蔓雯;. 鸭禽流感抗体血凝抑制试验(HI)的适用性改进[J]. , 2010, 1(02): 403-405. |
[13] | 宋帅;林彤;邵军军;丛国正;独军政;高闪电;常惠芸 . 抗O型口蹄疫病毒单克隆抗体轻链可变区的克隆及序列分析[J]. , 2009, 1(04): 0-811. |
[14] | 江小雪;张昭;武霓;王鸣华. 酶联免疫分析技术在杀菌剂残留检测中的应用[J]. , 2009, 1(03): 0-566. |
[15] | 袁秀芳;徐丽华;王一成;张存;叶伟成. 猪胸膜肺炎放线杆菌apxⅣ表达蛋白单克隆抗体的制备[J]. , 2008, 1(06): 0-773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||