[1] |
印遇龙, 杨哲. 天然植物替代饲用促生长抗生素的研究与展望[J]. 饲料工业, 2020, 41(24): 1-7.
|
[2] |
刘玉芳. 四环素类抗生素在土壤中的迁移转化模拟研究[D]. 广州: 暨南大学, 2012.
|
[3] |
江凌. 技术性贸易壁垒对我国农产品出口影响分析及应对策略研究[D]. 重庆: 西南大学, 2012.
|
[4] |
SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725-759.
|
[5] |
吴娜娜, 钱虹, 李亚峰. 水中磺胺类抗生素去除技术研究进展[J]. 建筑与预算, 2017(6): 43-50.
|
[6] |
杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10): 2993-3002.
|
[7] |
王小彬, 闫湘, 李秀英. 畜禽粪污厌氧发酵沼液农用之环境安全风险[J]. 中国农业科学, 2021, 54(1): 110-139.
|
[8] |
孙刚, 袁守军, 计峰, 等. 畜禽粪便中抗生素残留危害及其研究进展[J]. 环境与健康杂志, 2009, 26(3): 277-279.
|
[9] |
孙刚. 畜禽粪便中四环素类抗生素检测分析及其在堆肥中的降解研究[D]. 合肥: 合肥工业大学, 2010.
|
[10] |
钟为章, 陈赛男, 李月, 等. 好氧堆肥对抗生素抗性基因的消长影响研究进展[J]. 应用化工, 2022, 51(7): 2057-2063.
|
[11] |
WHITEHEAD T R, COTTA M A. Stored swine manure and swine faeces as reservoirs of antibiotic resistance genes[J]. Letters in Applied Microbiology, 2013, 56(4): 264-267.
|
[12] |
QIAN X, GU J, SUN W, et al. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal of Hazardous Materials, 2018, 344: 716-722.
|
[13] |
HALEY B J, KIM S W, SALAHEEN S, et al. Differences in the microbial community and resistome structures of feces from preweaned calves and lactating dairy cows in commercial dairy herds[J]. Foodborne Pathogens and Disease, 2020, 17(8): 494-503.
|
[14] |
邹威, 金彩霞, 魏闪, 等. 华北地区不同规模畜禽养殖场粪便中抗生素抗性基因污染特征[J]. 农业环境科学学报, 2020, 39(11): 2640-2652.
|
[15] |
CHENG W X, CHEN H, SU C, et al. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in Eastern China[J]. Environment International, 2013, 61: 1-7.
|
[16] |
ZHANG Q Q, TIAN G M, JIN R C. The occurrence, maintenance, and proliferation of antibiotic resistance genes (ARGs) in the environment: influencing factors, mechanisms, and elimination strategies[J]. Applied Microbiology and Biotechnology, 2018, 102(19): 8261-8274.
|
[17] |
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172.
|
[18] |
徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3): 11-27.
|
[19] |
CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality, 2009, 38(3): 1086-1108.
|
[20] |
WANG Y Z, ZHANG Y L, LI J X, et al. Biogas energy generated from livestock manure in China: current situation and future trends[J]. Journal of Environmental Management, 2021, 297: 113324.
|
[21] |
王森, 焦瑞峰, 马艳华, 等. 我国畜禽粪便综合利用途径研究[J]. 河南科技学院学报(自然科学版), 2017, 45(1): 20-24.
|
[22] |
谷洁, 高华, 李鸣雷, 等. 施用有机无机复混肥对夏玉米生长和水分利用的影响[J]. 西北植物学报, 2004, 24(4): 638-642.
|
[23] |
徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学, 2010, 29(2): 169-178.
|
[24] |
汪涛, 杨再福, 陈勇航, 等. 地表水中磺胺类抗生素的生态风险评价[J]. 生态环境学报, 2016, 25(9): 1508-1514.
|
[25] |
赵勇, 李欢, 张昭寰, 等. 食源性致病菌耐药机制研究进展[J]. 生物加工过程, 2018, 16(2): 1-10.
|
[26] |
何敏艳. 高效铬还原菌Bacillus cereus SJ1和Lysinibacillus fusiformis ZC1的铬还原特性和全基因组序列分析[D]. 武汉: 华中农业大学, 2010.
|
[27] |
钱昱良, 杨振边, 马保华, 等. 强力霉素降解菌在蛋鸡粪堆肥中的应用及其抗性风险研究[J]. 中国家禽, 2022, 44(10): 69-76.
|
[28] |
张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(2): 337-343.
|
[29] |
韦蓓, 黄福义, 苏建强. 堆肥对污泥中四环素类抗生素及抗性基因的影响[J]. 环境工程学报, 2014, 8(12): 5431-5438.
|
[30] |
张丹, 彭双, 王丹青, 等. 鸡粪和猪粪生物发酵过程中抗生素抗性基因的动态变化[J]. 环境科学, 2023, 44(3): 1780-1791.
|
[31] |
郑宁国, 黄南, 王卫卫, 等. 高温堆肥过程对猪粪来源抗生素抗性基因的影响[J]. 环境科学, 2016, 37(5): 1986-1992.
|
[32] |
LIU Y W, FENG Y, CHENG D M, et al. Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue[J]. Bioresource Technology, 2018, 261: 249-256.
|
[33] |
LIAO H P, LU X M, RENSING C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology, 2018, 52(1): 266-276.
|
[34] |
YU Y S, CHEN L J, FANG Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862.
|
[35] |
韦蓓, 黄福义, 李虎, 等. 污泥堆肥过程中磺胺类和大环内酯类抗性基因的残留[J]. 应用与环境生物学报, 2014, 20(3): 395-400.
|
[36] |
GOU C L, WANG Y Q, ZHANG X Q, et al. Effects of chlorotetracycline on antibiotic resistance genes and the bacterial community during cattle manure composting[J]. Bioresource Technology, 2021, 323: 124517.
|
[37] |
MACGREGOR S T, MILLER F C, PSARIANOS K M, et al. Composting process control based on interaction between microbial heat output and temperature[J]. Applied and Environmental Microbiology, 1981, 41(6): 1321-1330.
|
[38] |
XIAO Y, ZENG G M, YANG Z H, et al. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste[J]. Bioresource Technology, 2009, 100(20): 4807-4813.
|
[39] |
余震, 周顺桂. 超高温好氧发酵技术:堆肥快速腐熟与污染控制机制[J]. 南京农业大学学报, 2020, 43(5): 781-789.
|
[40] |
廖汉鹏, 陈志, 余震, 等. 有机固体废物超高温好氧发酵技术及其工程应用[J]. 福建农林大学学报(自然科学版), 2017, 46(4): 439-444.
|
[41] |
YU Z, TANG J, LIAO H P, et al. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant[J]. Bioresource Technology, 2018, 265: 146-154.
|
[42] |
OSHIMA T, MORIYA T. A preliminary analysis of microbial and biochemical properties of high-temperature compost[J]. Annals of the New York Academy of Sciences, 2008, 1125: 338-344.
|
[43] |
TASHIRO Y, TABATA H, ITAHARA A, et al. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures[J]. Journal of Bioscience and Bioengineering, 2016, 122(5): 606-612.
|
[44] |
薛兆骏, 周国亚, 俞肖峰, 等. 超高温自发热好氧堆肥工艺处理剩余污泥[J]. 中国环境科学, 2017, 37(9): 3399-3406.
|
[45] |
王晓诚, 郭颖, 颜开红. 超高温自发热好氧堆肥工艺处理生活垃圾探究[J]. 环境工程, 2020, 38(10): 183-189.
|
[46] |
LIAO H P, LIU C, AI C F, et al. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting[J]. The ISME Journal, 2023, 17(6): 916-930.
|
[47] |
QIAN X, SUN W, GU J, et al. Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting[J]. Bioresource Technology, 2016, 220: 425-432.
|
[48] |
XIE W Y, SHEN Q, ZHAO F J. Antibiotics and antibiotic resistance from animal manures to soil: a review[J]. European Journal of Soil Science, 2018, 69(1): 181-195.
|
[49] |
GUO A Y, GU J, WANG X J, et al. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting[J]. Bioresource Technology, 2017, 244(Pt 1): 658-663.
|
[50] |
CHEN Z Q, WANG Y, WEN Q X. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting[J]. Environmental Pollution, 2018, 237: 977-987.
|
[51] |
SELVAM A, XU D L, ZHAO Z Y, et al. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure[J]. Bioresource Technology, 2012, 126: 383-390.
|
[52] |
LIAO H P, ZHAO Q, CUI P, et al. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting[J]. Environment International, 2019, 133(Pt B): 105203.
|
[53] |
STALEY Z R, TUAN C Y, ESKRIDGE K M, et al. Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure[J]. The Science of the Total Environment, 2021, 768: 144220.
|
[54] |
KARADAG D, ÖZKAYA B, ÖLMEZ E, et al. Profiling of bacterial community in a full-scale aerobic composting plant[J]. International Biodeterioration & Biodegradation, 2013, 77: 85-90.
|
[55] |
YAMADA T, SUZUKI A, UEDA H, et al. Successions of bacterial community in composting cow dung wastes with or without hyperthermophilic pre-treatment[J]. Applied Microbiology and Biotechnology, 2008, 81(4): 771-781.
|
[56] |
张羽. 污水厂剩余污泥好氧堆肥控制因素及微生物特性的研究[D]. 长春: 吉林建筑大学, 2015.
|
[57] |
MA W J, WANG L, XU X Y, et al. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure[J]. The Science of the Total Environment, 2022, 839: 156243.
|
[58] |
GURMESSA B, PEDRETTI E F, COCCO S, et al. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency[J]. The Science of the Total Environment, 2020, 721: 137532.
|