浙江农业科学 ›› 2022, Vol. 63 ›› Issue (10): 2252-2257.DOI: 10.16178/j.issn.0528-9017.20220071
收稿日期:
2022-04-26
出版日期:
2022-10-11
发布日期:
2022-10-26
通讯作者:
杨红春
作者简介:
杨红春(1982—),男,江苏扬州人,教授,博士,研究方向为植物生殖转变的表观遗传学调控机制,E-mail: h.yang@whu.edu.cn。基金资助:
Received:
2022-04-26
Online:
2022-10-11
Published:
2022-10-26
摘要:
多梳蛋白复合体PRC2(polycomb repressive complex 2)通过三甲基化组蛋白H3第27位赖氨酸(H3K27me3)抑制基因的表达,在表观调控过程中发挥了重要作用。水稻中,PRC2参与水稻株高、花期、育性和粒重等性状的调控,维持水稻正常发育。本文总结并讨论了近年来PRC2调控水稻发育方面的研究进展,为进一步探索水稻PRC2功能及其作用机制提供参考。
中图分类号:
赵靖泽, 杨红春. 多梳蛋白复合体PRC2调控水稻发育的研究进展[J]. 浙江农业科学, 2022, 63(10): 2252-2257.
[1] |
MÜLLER J, HART C M, FRANCIS N J, et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex[J]. Cell, 2002, 111(2): 197-208.
DOI URL |
[2] |
CAO R, WANG L J, WANG H B, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing[J]. Science, 2002, 298(5595): 1039-1043.
DOI PMID |
[3] |
KETEL C S, ANDERSEN E F, VARGAS M L, et al. Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes[J]. Molecular and Cellular Biology, 2005, 25(16): 6857-6868.
PMID |
[4] |
NEKRASOV M, WILD B, MÜLLER J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2[J]. EMBO Reports, 2005, 6(4): 348-353.
DOI URL |
[5] |
BAUMBUSCH L O, THORSTENSEN T, KRAUSS V, et al. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes[J]. Nucleic Acids Research, 2001, 29(21): 4319-4333.
DOI URL |
[6] |
GOODRICH J, PUANGSOMLEE P, MARTIN M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386 (6620): 44-51.
DOI URL |
[7] |
GROSSNIKLAUS U, VIELLE-CALZADA J P, HOEPPNER M A, et al. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis[J]. Science, 1998, 280(5362): 446-450.
DOI URL |
[8] |
YOSHIDA N, YANAI Y, CHEN L J, et al. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis[J]. The Plant Cell, 2001, 13(11): 2471-2481.
DOI URL |
[9] |
OHAD N, YADEGARI R, MARGOSSIAN L, et al. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J]. The Plant Cell, 1999, 11(3): 407-415.
DOI URL |
[10] |
KÖHLER C, HENNIG L, BOUVERET R, et al. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development[J]. The EMBO Journal, 2003, 22(18): 4804-4814.
DOI URL |
[11] | KIYOSUE T, OHAD N, YADEGARI R, et al. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 4186-4191. |
[12] | LUO M, BILODEAU P, KOLTUNOW A, et al. Genes controlling fertilization-independent seed development in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(1): 296-301. |
[13] |
GENDALL A R, LEVY Y Y, WILSON A, et al. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J]. Cell, 2001, 107(4): 525-535.
DOI URL |
[14] |
DE LUCIA F, CREVILLEN P, JONES A M E, et al. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16831-16836.
DOI PMID |
[15] |
MÜLLER-XING R, CLARENZ O, POKORNY L, et al. Polycomb-group proteins and FLOWERING LOCUS T maintain commitment to flowering in Arabidopsis thaliana[J]. The Plant Cell, 2014, 26(6): 2457-2471.
DOI URL |
[16] |
DERKACHEVA M, STEINBACH Y, WILDHABER T, et al. Arabidopsis MSI1 connects LHP1 to PRC2 complexes[J]. The EMBO Journal, 2013, 32(14): 2073-2085.
DOI URL |
[17] |
KATZ A, OLIVA M, MOSQUNA A, et al. FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development[J]. The Plant Journal, 2004, 37(5): 707-719.
DOI URL |
[18] |
LUO M, PLATTEN D, CHAUDHURY A, et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes[J]. Molecular Plant, 2009, 2(4): 711-723.
DOI PMID |
[19] |
NALLAMILLI B R R, ZHANG J, MUJAHID H, et al. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis[J]. PLoS Genetics, 2013, 9(3): e1003322.
DOI URL |
[20] |
HUANG X L, LU Z H, WANG X, et al. Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3[J]. The Plant Journal, 2016, 87(3): 305-317.
DOI PMID |
[21] |
LIU X B, WEI X J, SHENG Z H, et al. Polycomb protein OsFIE2 affects plant height and grain yield in rice[J]. PLoS One, 2016, 11(10): e0164748.
DOI URL |
[22] |
LI S S, ZHOU B, PENG X B, et al. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development[J]. New Phytologist, 2014, 201(1): 66-79.
DOI PMID |
[23] |
KAMIYA N, NAGASAKI H, MORIKAMI A, et al. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem[J]. The Plant Journal, 2003, 35(4): 429-441.
DOI URL |
[24] |
CHENG X J, PAN M Y, ZHIGUO E, et al. The maternally expressed polycomb group gene OsEMF2a is essential for endosperm cellularization and imprinting in rice[J]. Plant Communications, 2020, 2(1): 100092.
DOI URL |
[25] | ZHANG H Y, LUO M, JOHNSON S D, et al. Parental genome imbalance causes post-zygotic seed lethality and deregulates imprinting in rice[J]. Rice (New York, N Y), 2016, 9(1): 43. |
[26] | TONOSAKI K, ONO A, KUNISADA M, et al. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice[J]. The Plant Cell, 2020, 33(1): 85-103. |
[27] |
PRASAD K, PARAMESWARAN S, VIJAYRAGHAVAN U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the Lemma and Palea and is an early-acting regulator of inner floral organs[J]. The Plant Journal, 2005, 43(6): 915-928.
DOI URL |
[28] |
AGRAWAL G K, ABE K, YAMAZAKI M, et al. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene[J]. Plant Molecular Biology, 2005, 59(1): 125-135.
DOI URL |
[29] | JEON J S, JANG S, LEE S, et al. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development[J]. The Plant Cell, 2000, 12(6): 871-884. |
[30] |
GAO X C, LIANG W Q, YIN C S, et al. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development[J]. Plant Physiology, 2010, 153(2): 728-740.
DOI URL |
[31] | KOBAYASHI K, MAEKAWA M, MIYAO A, et al. PANICLE PHYTOMER2 (PAP 2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice[J]. Plant and Cell Physiology, 2009, 51(1): 47-57. |
[32] |
KHANDAY I, YADAV S R, VIJAYRAGHAVAN U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J]. Plant Physiology, 2013, 161(4): 1970-1983.
DOI PMID |
[33] |
CONRAD L J, KHANDAY I, JOHNSON C, et al. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice[J]. The Plant Journal, 2014, 80(5): 883-894.
DOI URL |
[34] |
LI H, YUAN Z, VIZCAY-BARRENA G, et al. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiology, 2011, 156(2): 615-630.
DOI PMID |
[35] |
DENG L C, ZHANG S W, WANG G L, et al. Down-regulation of OsEMF2b caused semi-sterility due to anther and pollen development defects in rice[J]. Frontiers in Plant Science, 2017, 8: 1998.
DOI URL |
[36] |
FERNÁNDEZ GÓMEZ J, WILSON Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development[J]. Plant Biotechnology Journal, 2014, 12(6): 765-777.
DOI PMID |
[37] |
MURRAY F, KALLA R, JACOBSEN J, et al. A role for HvGAMYB in anther development[J]. The Plant Journal, 2003, 33(3): 481-491.
DOI URL |
[38] |
CHEN M, XIE S Y, OUYANG Y D, et al. Rice PcG gene OsEMF2b controls seed dormancy and seedling growth by regulating the expression of OsVP1[J]. Plant Science, 2017, 260: 80-89.
DOI URL |
[39] |
THAKUR J K, MALIK M R, BHATT V, et al. A POLYCOMB group gene of rice (Oryza sativa L. sub species indica), OsiEZ1, codes for a nuclear-localized protein expressed preferentially in young seedlings and during reproductive development[J]. Gene, 2003, 314: 1-13.
DOI URL |
[40] | LIU X Y, ZHOU C, ZHAO Y, et al. The rice enhancer of zeste[E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time[J]. Frontiers in Plant Science, 2014, 5: 591. |
[41] |
ASHIKARI M, SAKAKIBARA H, LIN S Y, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
PMID |
[42] |
LIU X Y, ZHOU S L, WANG W T, et al. Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem[J]. The Plant Cell, 2015, 27(5): 1428-1444.
DOI PMID |
[43] | LIU X Y, LUO J L, LI T T, et al. SDG711 is involved in rice seed development through regulation of starch metabolism gene expression in coordination with other histone modifications[J]. Rice (New York, N Y), 2021, 14(1): 25. |
[44] |
ZHONG J, PENG Z, PENG Q L, et al. Regulation of plant height in rice by the Polycomb group genes OsEMF2b, OsFIE2 and OsCLF[J]. Plant Science, 2018, 267: 157-167.
DOI URL |
[45] |
HORARD B, TATOUT C, POUX S, et al. Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor[J]. Molecular and Cellular Biology, 2000, 20(9): 3187-3197.
DOI URL |
[46] |
MAHMOUDI T, ZUIJDERDUIJN L M P, MOHD-SARIP A, et al. GAGA facilitates binding of pleiohomeotic to a chromatinized Polycomb response element[J]. Nucleic Acids Research, 2003, 31(14): 4147-4156.
PMID |
[47] |
BROWN J L, MUCCI D, WHITELEY M, et al. The Drosophila polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1[J]. Molecular Cell, 1998, 1(7): 1057-1064.
DOI URL |
[48] |
WANG L J, BROWN J L, CAO R, et al. Hierarchical recruitment of polycomb group silencing complexes[J]. Molecular Cell, 2004, 14(5): 637-646.
PMID |
[49] |
MOZGOVA I, HENNIG L. The polycomb group protein regulatory network[J]. Annual Review of Plant Biology, 2015, 66: 269-296.
DOI PMID |
[1] | 叶胜海, 叶靖, 刘鑫, 王仁杯, 翟荣荣, 巫明明, 朱国富, 张小明. “十三五”浙江省常规晚粳稻育种的进展[J]. 浙江农业科学, 2022, 63(10): 2248-2251. |
[2] | 胡铁军, 张怀杰, 许熔熔. 缓释肥配施脲铵氮肥对稻麦轮作体系产量和氮肥利用率的影响[J]. 浙江农业科学, 2022, 63(10): 2268-2270. |
[3] | 钱炜樱, 闾君, 蒋婕, 闻秀娟, 孙叶芳. 绍兴市越城区水稻化肥利用率探究[J]. 浙江农业科学, 2022, 63(10): 2271-2273. |
[4] | 李韵, 李诚永, 李正泉, 袁敏良, 徐南昌, 王宏航. 稻-豆-油三熟制油菜茬早稻适宜播种期试验[J]. 浙江农业科学, 2022, 63(10): 2279-2282. |
[5] | 余波, 杨军, 胡庆峰, 林添资, 景德道, 钱华飞, 李闯, 曾生元, 孙立亭, 杜灿灿, 龚红兵. 同熟期粳稻品种混栽对产量性状的影响[J]. 浙江农业科学, 2022, 63(9): 1936-1939. |
[6] | 黄仨仨, 金明焕, 刘禹恒, 李飞飞, 吕尊富. 基于便携式作物生长监测仪的水稻生长指标光谱监测研究[J]. 浙江农业科学, 2022, 63(9): 1952-1958. |
[7] | 衣政伟, 侯凡, 胡中泽, 唐昌华. 2020年长江中下游中籼迟熟水稻区域试验[J]. 浙江农业科学, 2022, 63(9): 1959-1963. |
[8] | 王建军, 宋建, 范宏环, 周桂香, 张礼霞, 崔永涛. 籼粳杂交稻浙优817的选育与应用[J]. 浙江农业科学, 2022, 63(7): 1394-1396. |
[9] | 闫川, 詹艳, 蒋根水, 洪晓富, 李新敏, 纪昊, 宋佳谕, 陈宇眺. 杂交中粳水稻浙杭优820的选育与应用[J]. 浙江农业科学, 2022, 63(7): 1397-1399. |
[10] | 倪日群, 林华, 叶胜海. 实现泰两优1332优质高产的氮肥施用量探索[J]. 浙江农业科学, 2022, 63(7): 1452-1455. |
[11] | 刘小琴. 4种不同类型叶面阻控剂对水稻镉吸收和积累的影响[J]. 浙江农业科学, 2022, 63(7): 1456-1459. |
[12] | 朱芸, 傅庆林, 郭彬, 林义成, 刘琛. 腐殖酸和脱硫石膏对滨海盐土及水稻产量的影响[J]. 浙江农业科学, 2022, 63(6): 1139-1143. |
[13] | 郑铭洁, 刘琛, 朱铭, 傅庆林, 郭彬, 裘高扬, 李华, 林义成. 浙江省高产稻田的土壤肥力特征研究[J]. 浙江农业科学, 2022, 63(6): 1147-1149. |
[14] | 徐君言, 马宁, 裘高扬, 郭彬, 刘琛, 林义成, 傅庆林. 沸石与腐殖酸对滨海盐土水稻产量及土壤性质的影响[J]. 浙江农业科学, 2022, 63(6): 1165-1168. |
[15] | 刘荣杰, 洪春来, 朱凤香, 姚燕来, 朱为静, 洪磊东, 王卫平. 石灰氮调理剂在重金属镉、镍污染农田上的试验效果初探[J]. 浙江农业科学, 2022, 63(6): 1192-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||