浙江农业科学 ›› 2025, Vol. 66 ›› Issue (4): 979-985.DOI: 10.16178/j.issn.0528-9017.20240744
收稿日期:
2024-09-19
出版日期:
2025-04-11
发布日期:
2025-05-09
作者简介:
朱宇(1989—),男,湖北荆州人,讲师,博士,研究方向为农业害虫综合防控,E-mail:zhuyuphd@foxmail.com。
Received:
2024-09-19
Online:
2025-04-11
Published:
2025-05-09
摘要:
该文通过高通量测序技术分析了稻纵卷叶螟五龄幼虫和蛹中miRNA的表达情况,并对显著差异表达的miRNAs进行了靶基因的预测和功能富集分析。在稻纵卷叶螟的五龄幼虫和蛹的miRNA文库中,存在44个miRNAs。五龄幼虫和蛹文库之间差异表达显著的miRNAs有11个,对应的靶基因有756个。对靶基因进行功能分析,发现这些靶基因显著富集到14个GO条目。该研究不仅提供了稻纵卷叶螟五龄幼虫和蛹发育过程中miRNA表达谱和差异表达信息,也为miRNA调控昆虫发育的功能研究奠定了基础。
中图分类号:
朱宇, 刘洋. 稻纵卷叶螟不同发育阶段miRNA表达谱分析[J]. 浙江农业科学, 2025, 66(4): 979-985.
ZHU Yu, LIU Yang. Analysis of miRNA expression profiles at different developmental stages of Cnaphalocrocis medinalis[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 979-985.
样品 | 原始序列/ 条 | 纯净序列的数量/ 条(比例/%) | 比对到稻纵卷叶螟基因组 的数量/条(比例/%) |
---|---|---|---|
Larvae1 | 12 609 492 | 9 937 945(78.8) | 6 070 640(48.1) |
Larvae2 | 13 822 323 | 10 874 477(78.7) | 6 815 993(49.3) |
Larvae3 | 14 537 527 | 10 860 480(74.7) | 7 719 131(53.1) |
Pupae1 | 10 273 225 | 8 302 666(80.8) | 5 958 208(58.0) |
Pupae2 | 12 165 146 | 9 960 787(81.9) | 6 317 880(51.9) |
Pupae3 | 10 156 333 | 8 033 670(79.1) | 5 546 433(54.6) |
表1 sRNA-seq数据信息概览
Table 1 An overview of sRNA-seq dataset
样品 | 原始序列/ 条 | 纯净序列的数量/ 条(比例/%) | 比对到稻纵卷叶螟基因组 的数量/条(比例/%) |
---|---|---|---|
Larvae1 | 12 609 492 | 9 937 945(78.8) | 6 070 640(48.1) |
Larvae2 | 13 822 323 | 10 874 477(78.7) | 6 815 993(49.3) |
Larvae3 | 14 537 527 | 10 860 480(74.7) | 7 719 131(53.1) |
Pupae1 | 10 273 225 | 8 302 666(80.8) | 5 958 208(58.0) |
Pupae2 | 12 165 146 | 9 960 787(81.9) | 6 317 880(51.9) |
Pupae3 | 10 156 333 | 8 033 670(79.1) | 5 546 433(54.6) |
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 | ||||
---|---|---|---|---|---|---|---|---|
cme-miR-279a | aguggguguaagucuggaagcaca | ugacuagaucuacacucauuga | aguggguguaagucuggaagcacaguguucaauucugugacuagaucuacacucauuga | Chr21:6202860..6202919:+ | ||||
cme-miR-9 | ucuuugguauccuagcuguagg | uaaaguuaugguaccgaaguua | ucuuugguauccuagcuguaggcguauugagcgaacccuaaaguuaugguaccgaaguua | Chr10:16800953..16801013:- | ||||
cme-miR-276 | agcgagguauagaguuccuacg | uaggaacuucauaccgugcucu | agcgagguauagaguuccuacguaucauuaacuguaggaacuucauaccgugcucu | Chr15:12727857..12727913:- | ||||
cme-bantam | ugguuuucauaaugauuugacaga | ugagaucauugugaaagcugau | ugguuuucauaaugauuugacagauuguuuucaauauucugagaucauugugaaagcugau | Chr15:9669491..9669552:+ | ||||
cme-miR-279c | gaugagugaaucucuaguucaag | ugacuagauuuucacuuauccu | gaugagugaaucucuaguucaagucucuccguaucuugacuagauuuucacuuauccu | Chr12:14524777..14524835:+ | ||||
cme-miR-305 | auuguacuucaucaggugcucugg | aggcgcuuguuggaguacacuua | auuguacuucaucaggugcucuggugaugaucguuccaggcgcuuguuggaguacacuua | Chr10:120298..120358:+ | ||||
cme-miR-279b | gaugaguggagguuuagugcaug | ugacuagauccacacucaucca | gaugaguggagguuuagugcauguuucuguacaucaugacuagauccacacucaucca | Chr4:6349550..6349608:- | ||||
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 | ||||
cme-miR-2 | ucggcaaagcggcugugcugug | uaucacagccagcuuuguugacu | ucggcaaagcggcugugcugugcuguuccauagacauaucacagccagcuuuguugacu | Chr1:6383303..6383362:- | ||||
cme-miR-13 | ucguaaaaaugguuguguuuug | uaucacagccauuuuugacgagu | ucguaaaaaugguuguguuuuguagauucaucauaucacagccauuuuugacgagu | Chr1:6383573..6383629:- | ||||
cme-miR-71 | ugaaagacuuggguagugagaug | ucucacuaccuugucuuucaug | ugaaagacuuggguagugagauguccugcacaucacaaauucucacuaccuugucuuucaug | Chr1:6409942..6410004:- |
表2 稻纵卷叶螟2个miRNA文库中预测出的前10位保守miRNA及其序列
Table 2 Top 10 conserved miRNA candidates and their sequences predicted from 2 miRNA of C. medinalis
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 | ||||
---|---|---|---|---|---|---|---|---|
cme-miR-279a | aguggguguaagucuggaagcaca | ugacuagaucuacacucauuga | aguggguguaagucuggaagcacaguguucaauucugugacuagaucuacacucauuga | Chr21:6202860..6202919:+ | ||||
cme-miR-9 | ucuuugguauccuagcuguagg | uaaaguuaugguaccgaaguua | ucuuugguauccuagcuguaggcguauugagcgaacccuaaaguuaugguaccgaaguua | Chr10:16800953..16801013:- | ||||
cme-miR-276 | agcgagguauagaguuccuacg | uaggaacuucauaccgugcucu | agcgagguauagaguuccuacguaucauuaacuguaggaacuucauaccgugcucu | Chr15:12727857..12727913:- | ||||
cme-bantam | ugguuuucauaaugauuugacaga | ugagaucauugugaaagcugau | ugguuuucauaaugauuugacagauuguuuucaauauucugagaucauugugaaagcugau | Chr15:9669491..9669552:+ | ||||
cme-miR-279c | gaugagugaaucucuaguucaag | ugacuagauuuucacuuauccu | gaugagugaaucucuaguucaagucucuccguaucuugacuagauuuucacuuauccu | Chr12:14524777..14524835:+ | ||||
cme-miR-305 | auuguacuucaucaggugcucugg | aggcgcuuguuggaguacacuua | auuguacuucaucaggugcucuggugaugaucguuccaggcgcuuguuggaguacacuua | Chr10:120298..120358:+ | ||||
cme-miR-279b | gaugaguggagguuuagugcaug | ugacuagauccacacucaucca | gaugaguggagguuuagugcauguuucuguacaucaugacuagauccacacucaucca | Chr4:6349550..6349608:- | ||||
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 | ||||
cme-miR-2 | ucggcaaagcggcugugcugug | uaucacagccagcuuuguugacu | ucggcaaagcggcugugcugugcuguuccauagacauaucacagccagcuuuguugacu | Chr1:6383303..6383362:- | ||||
cme-miR-13 | ucguaaaaaugguuguguuuug | uaucacagccauuuuugacgagu | ucguaaaaaugguuguguuuuguagauucaucauaucacagccauuuuugacgagu | Chr1:6383573..6383629:- | ||||
cme-miR-71 | ugaaagacuuggguagugagaug | ucucacuaccuugucuuucaug | ugaaagacuuggguagugagauguccugcacaucacaaauucucacuaccuugucuuucaug | Chr1:6409942..6410004:- |
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 |
---|---|---|---|---|
cme-nov-1 | cuaccgacugaacagacuaggu | cuagucucuuucgucgguaaau | cuaccgacugaacagacuaggucucccgacauaccuagucuc uuucgucgguaaau | Chr15:1596464..1596520:+ |
cme-nov-11 | ugggcuccggcaacgucgagua | uucgacguugccguagucuacu | ugggcuccggcaacgucgaguacguagcucggugagcguugu cuauucgacguugccguagucuacu | Chr1:5638030..5638097:+ |
cme-nov-14 | auuuucacacacgauugaauc | gacggucgugugugaaagcga | auuuucacacacgauugaaucuaguuaccuucugagacggu cgugugugaaagcga | Chr1:15273400..15273456:+ |
cme-nov-15 | cagaguauugcagaugaaacga | guuucaucugcaauacucuacg | cagaguauugcagaugaaacgacgaaaaaaucuuguuucau cugcaauacucuacg | Chr9:9395051..9395107:- |
cme-nov-16 | gagcggauaacauucggaacga | guuccgaauuuuauccgcuagg | gagcggauaacauucggaacgauguuucucuagcggauaau uuccguuccgaauuuuauccgcuagg | Chr17:4724197..4724264:- |
cme-nov-17 | uggugcuuguaacuucuuugua | caaggaaguuacaagcaccaac | uggugcuuguaacuucuuuguaaguuccaauccaaggaagu uacaagcaccaac | Chr28:3976039..3976093:+ |
cme-nov-18-1 | cuuugaaccgcugcucuaaca | cuagcgcagcgguuuaaagcu | cuuugaaccgcugcucuaacacgggccucuuguuugcuagc gcagcgguuuaaagcu | Chr19:10350876..10350933:- |
cme-nov-19 | ucacacaggucaagccggcgccuu | gggccggcuugaccugaguggca | ucacacaggucaagccggcgccuucauucggacaagggccgg cuugaccugaguggca | Chr14:2737359..2737417:- |
cme-nov-18-2 | cuuugaaccgcugcacuaaca | cuagcgcagcgguuuaaagcu | cuuugaaccgcugcacuaacaugggucuuuuguuugcuagc gcagcgguuuaaagcu | Chr19:10350335..10350392:- |
cme-nov-2 | ucacacaggucaagcaggcgccuu | gggccggcuugaccugaguggca | ucacacaggucaagcaggcgccuucauucggacaagggccg gcuugaccugaguggca | Chr14:2733471..2733529:- |
表3 稻纵卷叶螟2个miRNA文库中预测出的前10位新miRNA及其序列
Table 3 Top 10 novel miRNA candidates and their sequences predicted from 2 miRNA of C.medinalis
miRNA名称 | 5p序列 | 3p序列 | 前体序列 | 基因座 |
---|---|---|---|---|
cme-nov-1 | cuaccgacugaacagacuaggu | cuagucucuuucgucgguaaau | cuaccgacugaacagacuaggucucccgacauaccuagucuc uuucgucgguaaau | Chr15:1596464..1596520:+ |
cme-nov-11 | ugggcuccggcaacgucgagua | uucgacguugccguagucuacu | ugggcuccggcaacgucgaguacguagcucggugagcguugu cuauucgacguugccguagucuacu | Chr1:5638030..5638097:+ |
cme-nov-14 | auuuucacacacgauugaauc | gacggucgugugugaaagcga | auuuucacacacgauugaaucuaguuaccuucugagacggu cgugugugaaagcga | Chr1:15273400..15273456:+ |
cme-nov-15 | cagaguauugcagaugaaacga | guuucaucugcaauacucuacg | cagaguauugcagaugaaacgacgaaaaaaucuuguuucau cugcaauacucuacg | Chr9:9395051..9395107:- |
cme-nov-16 | gagcggauaacauucggaacga | guuccgaauuuuauccgcuagg | gagcggauaacauucggaacgauguuucucuagcggauaau uuccguuccgaauuuuauccgcuagg | Chr17:4724197..4724264:- |
cme-nov-17 | uggugcuuguaacuucuuugua | caaggaaguuacaagcaccaac | uggugcuuguaacuucuuuguaaguuccaauccaaggaagu uacaagcaccaac | Chr28:3976039..3976093:+ |
cme-nov-18-1 | cuuugaaccgcugcucuaaca | cuagcgcagcgguuuaaagcu | cuuugaaccgcugcucuaacacgggccucuuguuugcuagc gcagcgguuuaaagcu | Chr19:10350876..10350933:- |
cme-nov-19 | ucacacaggucaagccggcgccuu | gggccggcuugaccugaguggca | ucacacaggucaagccggcgccuucauucggacaagggccgg cuugaccugaguggca | Chr14:2737359..2737417:- |
cme-nov-18-2 | cuuugaaccgcugcacuaaca | cuagcgcagcgguuuaaagcu | cuuugaaccgcugcacuaacaugggucuuuuguuugcuagc gcagcgguuuaaagcu | Chr19:10350335..10350392:- |
cme-nov-2 | ucacacaggucaagcaggcgccuu | gggccggcuugaccugaguggca | ucacacaggucaagcaggcgccuucauucggacaagggccg gcuugaccugaguggca | Chr14:2733471..2733529:- |
miRNA名称 | 均值归一化计数 | 序列 | 矫正后的p-value | log2(fold change) | 表达模式 | |
---|---|---|---|---|---|---|
cme-miR-375-3p | 935.075 735 10 | uuuguucgccccggcucgugucg | 9.95×10-23 | -3.096 122 133 | 下调 | |
cme-miR-375-5p | 21.214 143 36 | acccgagcgguuugagcaaacu | 0.007 884 747 | -2.858 311 285 | 下调 | |
cme-nov-14-3p | 899.633 629 90 | gacggucgugugugaaagcga | 6.17×10-10 | -1.545 087 711 | 下调 | |
cme-miR-316-5p | 252.697 583 80 | ugucuuuuuccgcuuugcugcug | 0.004 342 468 | -1.201 498 127 | 下调 | |
cme-miR-305-5p | 20 358.335 510 00 | auuguacuucaucaggugcucugg | 0.000 204 816 | -1.170 272 589 | 下调 | |
cme-miR-276-5p | 44.572 856 45 | agcgagguauagaguuccuacg | 0.034 383 708 | -1.003 047 352 | 下调 | |
cme-miR-71-3p | 1 884.099 049 00 | ucucacuaccuugucuuucaug | 0.011 766 367 | 1.157 956 501 | 上调 | |
cme-miR-71-5p | 491.329 307 30 | ugaaagacuuggguagugagaug | 0.002 024 100 | 1.240 645 727 | 上调 | |
cme-miR-2-3p | 5 211.459 875 00 | uaucacagccagcuuuguugacu | 9.86×10-14 | 1.414 342 188 | 上调 | |
cme-miR-2765-3p | 21.617 345 71 | caacggaggacgaguucccgcu | 0.044 193 266 | 1.805 816 556 | 上调 | |
cme-miR-193-3p | 27.030 886 26 | uacuggccugcuaagucccaag | 0.002 792 049 | 3.145 834 273 | 上调 |
表4 稻纵卷叶螟五龄幼虫和蛹期差异性表达的miRNAs
Table 4 Differentially expressed miRNAs in fifth-instar larvae and pupae of C. medinalis
miRNA名称 | 均值归一化计数 | 序列 | 矫正后的p-value | log2(fold change) | 表达模式 | |
---|---|---|---|---|---|---|
cme-miR-375-3p | 935.075 735 10 | uuuguucgccccggcucgugucg | 9.95×10-23 | -3.096 122 133 | 下调 | |
cme-miR-375-5p | 21.214 143 36 | acccgagcgguuugagcaaacu | 0.007 884 747 | -2.858 311 285 | 下调 | |
cme-nov-14-3p | 899.633 629 90 | gacggucgugugugaaagcga | 6.17×10-10 | -1.545 087 711 | 下调 | |
cme-miR-316-5p | 252.697 583 80 | ugucuuuuuccgcuuugcugcug | 0.004 342 468 | -1.201 498 127 | 下调 | |
cme-miR-305-5p | 20 358.335 510 00 | auuguacuucaucaggugcucugg | 0.000 204 816 | -1.170 272 589 | 下调 | |
cme-miR-276-5p | 44.572 856 45 | agcgagguauagaguuccuacg | 0.034 383 708 | -1.003 047 352 | 下调 | |
cme-miR-71-3p | 1 884.099 049 00 | ucucacuaccuugucuuucaug | 0.011 766 367 | 1.157 956 501 | 上调 | |
cme-miR-71-5p | 491.329 307 30 | ugaaagacuuggguagugagaug | 0.002 024 100 | 1.240 645 727 | 上调 | |
cme-miR-2-3p | 5 211.459 875 00 | uaucacagccagcuuuguugacu | 9.86×10-14 | 1.414 342 188 | 上调 | |
cme-miR-2765-3p | 21.617 345 71 | caacggaggacgaguucccgcu | 0.044 193 266 | 1.805 816 556 | 上调 | |
cme-miR-193-3p | 27.030 886 26 | uacuggccugcuaagucccaag | 0.002 792 049 | 3.145 834 273 | 上调 |
[1] | ASGARI S. mroRNA functions in insects[J]. Insect Biochemistry and Molecular Biology, 2013, 43(4): 388-397. |
[2] | EE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854. |
[3] | MANILA T M, RIJU A, LAKSHMI PRIYA DARSHINI K, et al. In silico microRNA identification from paprika (Capsicum annuum) ESTs[J]. Nature Precedings, 2009(4):1-1.DOI:10.1038/NPRE.2009.3737.1. |
[4] | KOZOMARA A, GRIFFITHS-JONES S. miRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Rsearch, 2014, 42(Database issue): 68-73. |
[5] | JEYARAJ A, LIU S R, ZHANG X, et al. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.)[J]. Scientific Reports, 2017, 7(1): 13634. |
[6] | PASQUINELLI A E. microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nature Reviews Genetics, 2012, 13(4): 271-282. |
[7] | RAO Z C, HE W Y, LIU L, et al. Identification, expression and target gene analyses of Micrornas in Spodoptera litura[J]. PLoS One, 2012, 7(5): e37730. |
[8] | XU J, XU X X, LI S Z, et al. Genome-wide profiling of Plutella xylostella immunity-Related miRNAs after Isaria fumosorosea infection[J]. Frontiers in Physiology, 2017, 8: 1054. |
[9] | ETEBARI K, AFRAD M H, TANG B, et al. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella[J]. Insect Molecular Biology, 2018, 27(4): 478-491. |
[10] | SONG J S, LI W W, ZHAO H H, et al. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1[J]. Development, 2018, 145(24) : dev170670. |
[11] | 张孝羲, 陆自强, 耿济国, 等. 稻纵卷叶螟迁飞途径的研究[J]. 昆虫学报, 1980, 23(2):130-140. |
[12] | 闫冉. 稻纵卷叶螟种群迁飞监测方法研究[D]. 北京: 中国农业科学院, 2021. |
[13] | 沈彩云, 卢兆成. 稻纵卷叶螟为害的产量损失与防治指标[J]. 昆虫学报, 1984, 27(4):384-391. |
[14] | SUN Y, LIU S T, LING Y, et al. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole[J]. Pest Management Science, 2023, 79(9): 3290-3299. |
[15] | LI S W, YANG H, LIU Y F, et al. Transcriptome and gene expression analysis of the rice leaf folder, Cnaphalocrosis medinalis[J]. PLoS One, 2012, 7(11): e47401. |
[16] | ZHANG S K, REN X B, WANG Y C, et al. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides[J]. Journal of Economic Entomology, 2014, 107(2): 815-820. |
[17] | SUN X, ZENG F, YAN M, et al. Interactions of two odorant-binding proteins influence insect chemoreception[J]. Insect Molecular Biology, 2016, 25(6): 712-723. |
[18] | MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1):10. |
[19] | LANGMEAD B. Aligning short sequencing reads with bowtie[J]. Current Protocols in Bioinformatics, 2010, 32(1): 11.7.1-11.7.1. |
[20] | CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421. |
[21] | MACKOWIAK S D. Identification of novel and known miRNAs in deep-sequencing data with miRDeep2[J]. Current Protocols in Bioinformatics, 2011, 36(1): 12.10.1-12.10.15. |
[22] | LORENZ R, BERNHART S H, HÖNER ZU SIEDERDISSEN C, et al. ViennaRNA package 2.0[J]. Algorithms for Molecular Biology, 2011, 6(1): 26. |
[23] | FROMM B, BILLIPP T, PECK L E, et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome[J]. Annual Review of Genetics, 2015, 49: 213-242. |
[24] | YLLA G, FROMM B, PIULACHS M D, et al. The microRNA toolkit of insects[J]. Scientific Reports, 2016, 6: 37736. |
[25] | KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. miRBase: from microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47(D1): 155-162. |
[26] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. |
[27] | MEI Y, JING D, TANG S Y, et al. InsectBase 2.0: a comprehensive gene resource for insects[J]. Nucleic Acids Research, 2022, 50(D1): 1040-1045. |
[28] | HAAS B J, PAPANICOLAOU A, YASSOUR M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nature Protocols, 2013, 8(8): 1494-1512. |
[29] | ENRIGHT A J, JOHN B, GAUL U, et al. microRNA targets in Drosophila[J]. Genome Biology, 2003, 5(1): R1. DOI:10.1186/gb-2003-5-1-r1. |
[30] | REHMSMEIER M, STEFFEN P, HOCHSMANN M, et al. Fast and effective prediction of microRNA/target duplexes[J]. RNA, 2004, 10(10): 1507-1517. |
[31] | HUANG H Z, MCGARVEY P B, SUZEK B E, et al. A comprehensive protein-centric ID mapping service for molecular data integration[J]. Bioinformatics, 2011, 27(8): 1190-1191. |
[32] | BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60. |
[33] | SCHOOLMEESTERS A, EKLUND T, LEAKE D, et al. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells[J]. PLoS One, 2009, 4(5): e5605. |
[34] | HUANG T B, LÓPEZ-GIRÁLDEZ F, TOWNSEND J P, et al. RBE controls microRNA164 expression to effect floral organogenesis[J]. Development, 2012, 139(12): 2161-2169. |
[35] | PAPAIOANNOU G, INLOES J B, NAKAMURA Y, et al. Let-7 and miR-140 microRNAs coordinately regulate skeletal development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 3291-3300. |
[36] | ZHANG Z Q, LI T F, TANG G H. Identification and characterization of conserved and novel miRNAs in different development stages of Atrijuglans hetaohei Yang(Lepidoptera: Gelechioidea)[J]. Journal of Asia-Pacific Entomology, 2018, 21(1): 9-18. |
[37] | ZHANG X F, ZHENG Y, JAGADEESWARAN G, et al. Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 2012, 42(6): 381-395. |
[38] | REBIJITH K B, ASOKAN R, RANJITHA HANDE H, et al. The first report of miRNAs from a thysanopteran insect, Thrips palmi karny using high-throughput sequencing[J]. PLoS One, 2016, 11(9): e0163635. |
[39] | XIA X J, FU X N, DU J, et al. Regulation of circadian rhythm and sleep by miR-375-timeless interaction in Drosophila[J]. The FASEB Journal, 2020, 34(12): 16536-16551. |
[40] | MALIK M I, NAWAZ M, HASSAN I A, et al. A microRNA profile of saliva and role of miR-375 in Haemaphysalis longicornis (Ixodida: Ixodidae)[J]. Parasites & Vectors, 2019, 12(1): 68. |
[41] | SURRIDGE A K, LOPEZ-GOMOLLON S, MOXON S, et al. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene[J]. BMC Genomics, 2011, 12: 62. |
[1] | 曹梦娇, 姚张良, 王晔青, 叶丽萍, 应超, 陈轶平. 常用药剂对早稻二化螟的防治效果及对稻纵卷叶螟的影响[J]. 浙江农业科学, 2025, 66(2): 421-424. |
[2] | 方云峰, 姚张良. 稻纵卷叶螟和二化螟的2种智能监测评价[J]. 浙江农业科学, 2024, 65(3): 652-656. |
[3] | 文吉辉, 姚毅, 李一波, 宋齐生, 王智. 性诱剂在稻纵卷叶螟测报和诱杀中的应用[J]. 浙江农业科学, 2024, 65(2): 385-389. |
[4] | 雷海霞, 周冰颖, 李慧龙, 杨光, 朱君德, 冉忠伟, 王肖肖, 何世界. 7%氯虫·噻虫胺悬浮剂对稻纵卷叶螟和稻飞虱的田间防效[J]. 浙江农业科学, 2023, 64(8): 1954-1957. |
[5] | 吴越, 陈星星, 朱洁, 周朝生. 基于高通量测序的缢蛏三唑磷急性毒性胁迫下miRNA转录组分析[J]. 浙江农业科学, 2023, 64(6): 1338-1342. |
[6] | 邵俊雯, 王婉瑕, 李瑞莉, 赵红玉. 植物硫酸盐转运体研究进展[J]. 浙江农业科学, 2023, 64(6): 1417-1425. |
[7] | 沈煜潮, 郑许松, 徐红星, 吕仲贤. 稻田养鸭和食诱剂对稻纵卷叶螟的协同控制作用[J]. 浙江农业科学, 2022, 63(8): 1805-1808. |
[8] | 李宽, 郑能文, 蒋敏华, 王星. 不同监测方法对水稻稻纵卷叶螟的监测效果[J]. 浙江农业科学, 2022, 63(10): 2364-2367. |
[9] | 陈小忠, 刘春辉, 张倩倩, 金新梅, 姚张良. 水稻绿色防控下的化学防控示范比较[J]. 浙江农业科学, 2021, 62(9): 1811-1812. |
[10] | 谌江华, 任少鹏, 陈若霞, 王全胜. 高剂量送嫁药在甬优水稻上的应用试验[J]. 浙江农业科学, 2021, 62(9): 1813-1815. |
[11] | 林峰. 基于红外感应的稻纵卷叶螟智能监测装置的设计与实现[J]. 浙江农业科学, 2021, 62(7): 1451-1454. |
[12] | 杨兰, 高宇, 史树森. 4种微生物药剂防治水稻主要害虫的田间试验[J]. 浙江农业科学, 2021, 62(1): 119-120. |
[13] | 刘雪芬, 林杏, 赵成东, 刘小玲, 程慧斌. 7种药剂防治单季晚稻稻纵卷叶螟试验[J]. 浙江农业科学, 2019, 60(1): 92-92. |
[14] | 姚海峰, 仇智灵, 阮弋飞, 顾建强, 祝小祥. 水稻稻纵卷叶螟性诱监测与田间赶蛾和灯诱监测效果的比较[J]. 浙江农业科学, 2018, 59(5): 775-777. |
[15] | 徐伟东, 陆强, 黎菊, 陶国才, 冯金祥, 毛继晟. 4种药剂防治晚粳稻纵卷叶螟的效果[J]. 浙江农业科学, 2018, 59(4): 590-592. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||