[1] |
KOHN W D, HODGES R S. De novo design of α-helical coiled coils and bundles: models for the development of protein-design principles[J]. Trends in Biotechnology, 1998, 16(9): 379-389.
|
[2] |
SIMONS K T, BONNEAU R, RUCZINSKI I, et al. Ab initio protein structure prediction of CASP Ⅲ targets using ROSETTA[J]. Proteins: Structure, Function, and Genetics, 1999, 37(S3): 171-176.
|
[3] |
YANG Y, NIROULA A, SHEN B R, et al. PON-Sol: prediction of effects of amino acid substitutions on protein solubility[J]. Bioinformatics, 2016, 32(13): 2032-2034.
|
[4] |
FOLKMAN L, STANTIC B, SATTAR A, et al. EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models[J]. Journal of Molecular Biology, 2016, 428(6): 1394-1405.
|
[5] |
HUANG L T, GROMIHA M M, HO S Y. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations[J]. Bioinformatics, 2007, 23(10): 1292-1293.
|
[6] |
KOSKINEN P, TÖRÖNEN P, NOKSO-KOIVISTO J, et al. PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment[J]. Bioinformatics, 2015, 31(10): 1544-1552.
|
[7] |
GREENHALGH J C, FAHLBERG S A, PFLEGER B F, et al. Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production[J]. Nature Communications, 2021, 12: 5825.
|
[8] |
LU H, DIAZ DJ, CZARNECKI NJ, et al. Machine learning aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667.
|
[9] |
ROMERO P A, KRAUSE A, ARNOLD F H. Navigating the protein fitness landscape with Gaussian processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): E193-E201.
|
[10] |
CADET F, FONTAINE N, LI G Y, et al. A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes[J]. Scientific Reports, 2018, 8: 16757.
|
[11] |
LANDWEHR G M, BOGART J W, MAGALHAES C, et al. Accelerated enzyme engineering by machine-learning guided cell-free expression[J]. Nature Communications, 2025, 16: 865.
|
[12] |
WANG X R, YIN X D, JIANG D J, et al. Multi-modal deep learning enables efficient and accurate annotation of enzymatic active sites[J]. Nature Communications, 2024, 15: 7348.
|
[13] |
YEH A H, NORN C, KIPNIS Y, et al. De novo design of luciferases using deep learning[J]. Nature, 2023, 614(7949): 774-780.
|
[14] |
ANISHCHENKO I, PELLOCK S J, CHIDYAUSIKU T M, et al. De novo protein design by deep network hallucination[J]. Nature, 2021, 600(7889): 547-552.
|
[15] |
NORN C, WICKY B I M, JUERGENS D, et al. Protein sequence design by conformational landscape optimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2017228118.
|
[16] |
YANG J Y, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(3): 1496-1503.
|
[17] |
LI F R, YUAN L, LU H Z, et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction[J]. Nature Catalysis, 2022, 5(8): 662-672.
|
[18] |
BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373,871-876.
|
[19] |
WATSON J L, JUERGENS D, BENNETT N R, et al. De novo design of protein structure and function with RF diffusion[J]. Nature, 2023, 620(7976): 1089-1100.
|
[20] |
WANG W K, FENG C J, HAN R M, et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network[J]. Nature Communications, 2023, 14: 7266.
|
[21] |
SHEN T, HU Z H, SUN S Q, et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach[J]. Nature Methods, 2024, 21(12): 2287-2298.
|
[22] |
KAGAYA Y, ZHANG Z C, IBTEHAZ N, et al. NuFold: end-to-end approach for RNA tertiary structure prediction with flexible nucleobase center representation[J]. Nature Communications, 2025, 16: 881.
|