Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (10): 2514-2522.DOI: 10.16178/j.issn.0528-9017.20230282
Previous Articles Next Articles
LIU Xinhai1(), YAN Feiyu1, DENG Jiangxia1, ZHANG Ye1, ZHANG Guoliang1,2,*(
)
Received:
2023-03-17
Online:
2024-10-11
Published:
2024-10-25
CLC Number:
LIU Xinhai, YAN Feiyu, DENG Jiangxia, ZHANG Ye, ZHANG Guoliang. Research progress on biochar adsorption of soil organic pollutants[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(10): 2514-2522.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230282
项目 | 活性炭 | 生物质炭 | 硅胶 | 优势比较 |
---|---|---|---|---|
主要原料 | 煤、木料、硬果壳、果核、树脂等 | 农作物秸秆、木材、畜禽粪便、市政废物等 | 碱金属硅酸盐 | 相比于活性炭和硅胶,生物质炭原料来源广泛 |
元素组成 | 主要以C(80%~90%)为主 | C(>60%)、H、O、N、S、P、K、Ca等 | SiO2 | 相比于活性炭和硅胶,生物质炭中有些元素利于土壤中植物生长 |
生产条件 | 生产条件要求高,生产成本高 | 生产条件简单,生产成本低 | 生产条件要求高,生产成本高 | 与活性炭和硅胶相比,生物质炭生产过程简单,成本低 |
制备温度 | 600~900 ℃ | <700 ℃ | 300 ℃ | 相比于活性炭和硅胶,生物质炭制备温度较低 |
作用原理 | 表面吸附、催化作用 | 静电作用、表面吸附、化学作用 | 物理和化学作用 | 相比于活性炭和硅胶,生物质炭具有多种作用,对多种污染物吸附能力更强 |
性能特点 | 孔隙结构发达、比表面积大(500~3 000 m2·g-1) | 孔隙结构发达、比表面积大、稳定性较高 | 具有开放的多孔结构,比表面积很大 | 与生物质炭和硅胶相比,活性炭的比表面积更大,吸附性能更强 |
Table 1 Comparison of properties of biochar, activated carbon and silica gel
项目 | 活性炭 | 生物质炭 | 硅胶 | 优势比较 |
---|---|---|---|---|
主要原料 | 煤、木料、硬果壳、果核、树脂等 | 农作物秸秆、木材、畜禽粪便、市政废物等 | 碱金属硅酸盐 | 相比于活性炭和硅胶,生物质炭原料来源广泛 |
元素组成 | 主要以C(80%~90%)为主 | C(>60%)、H、O、N、S、P、K、Ca等 | SiO2 | 相比于活性炭和硅胶,生物质炭中有些元素利于土壤中植物生长 |
生产条件 | 生产条件要求高,生产成本高 | 生产条件简单,生产成本低 | 生产条件要求高,生产成本高 | 与活性炭和硅胶相比,生物质炭生产过程简单,成本低 |
制备温度 | 600~900 ℃ | <700 ℃ | 300 ℃ | 相比于活性炭和硅胶,生物质炭制备温度较低 |
作用原理 | 表面吸附、催化作用 | 静电作用、表面吸附、化学作用 | 物理和化学作用 | 相比于活性炭和硅胶,生物质炭具有多种作用,对多种污染物吸附能力更强 |
性能特点 | 孔隙结构发达、比表面积大(500~3 000 m2·g-1) | 孔隙结构发达、比表面积大、稳定性较高 | 具有开放的多孔结构,比表面积很大 | 与生物质炭和硅胶相比,活性炭的比表面积更大,吸附性能更强 |
[1] | GOMES L, SIMÕES S, DALLA NORA E, et al. Agricultural expansion in the Brazilian cerrado: increased soil and nutrient losses and decreased agricultural productivity[J]. Land, 2019, 8(1): 12. |
[2] | ÇOK I, MAZMANCI B, MAZMANCI M A, et al. Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean City Mersin, Turkey[J]. Environment International, 2012, 40: 63-69. |
[3] | COVACI A, HURA C, SCHEPENS P. Selected persistent organochlorine pollutants in Romania[J]. The Science of the Total Environment, 2001, 280(1/2/3): 143-152. |
[4] | KIM E J, PARK Y M, PARK J E, et al. Distributions of new Stockholm Convention POPs in soils across South Korea[J]. The Science of the Total Environment, 2014, 476/477: 327-335. |
[5] | POKHREL B, GONG P, WANG X P, et al. Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal[J]. Chemosphere, 2018, 200: 532-541. |
[6] | ZHU Y F, MA J, CHEN F, et al. Effective alleviation of Cd stress to microbial communities in mining reclamation soils by thiourea-modified biochar amendment[J]. Pedosphere, 2022, 32(6): 866-875. |
[7] | ZHENG B H, WANG L P, LEI K, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River Estuary and the adjacent area, China[J]. Chemosphere, 2016, 149: 91-100. |
[8] | NAZAROVA E A, NAZAROV A V, EGOROVA D O, et al. Influence of destructive bacteria and red clover (trifolium pratense L.) on the pesticides degradation in the soil[J]. Environmental Geochemistry and Health, 2022, 44(2): 399-408. |
[9] | CHARUSIRI W, VITIDSANT T. Biofuel production via the pyrolysis of sugarcane (Saccharum officinarum L.) leaves: characterization of the optimal conditions[J]. Sustainable Chemistry and Pharmacy, 2018, 10: 71-78. |
[10] | ZHANG Y F, XIE X Y, ZHAO J, et al. The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis[J]. Renewable Energy, 2020, 151: 255-262. |
[11] | JUNG J M, OH J I, BAEK K, et al. Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst[J]. Energy Conversion and Management, 2018, 165: 628-633. |
[12] | LIU Y X, YAO S, WANG Y Y, et al. Bio- and hydrochars from rice straw and pig manure: inter-comparison[J]. Bioresource Technology, 2017, 235: 332-337. |
[13] | ZHU Y, YI B J, YUAN Q X, et al. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar[J]. RSC Advances, 2018, 8(36): 19917-19929. |
[14] | JAYAWARDHANA Y, MAYAKADUWA S S, KUMARATHILAKA P, et al. Municipal solid waste-derived biochar for the removal of benzene from landfill leachate[J]. Environmental Geochemistry and Health, 2019, 41(4): 1739-1753. |
[15] | ZHU X D, LIU Y C, ZHOU C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 2014, 77: 627-636. |
[16] | LI L D, LONG A, FOSSUM B, et al. Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: a meta-analysis[J]. Soil Use and Management, 2023, 39(1): 43-52. |
[17] | BATAILLOU G, LEE C, MONNIER V, et al. Cedar wood-based biochar: properties, characterization, and applications as anodes in microbial fuel cell[J]. Applied Biochemistry and Biotechnology, 2022, 194(9): 4169-4186. |
[18] | WANG P, ZHANG J L, SHAO Q J, et al. Physicochemical properties evolution of chars from palm kernel shell pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(3): 1271-1280. |
[19] | WANG K F, PENG N, LU G N, et al. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar[J]. Waste and Biomass Valorization, 2020, 11(2): 613-624. |
[20] | JIA L, FAN B G, YAO Y X, et al. Study on the elemental mercury adsorption characteristics and mechanism of iron-based modified biochar materials[J]. Energy & Fuels, 2018, 32(12): 12554-12566. |
[21] | LI H X, LU X Q, XU Y, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019, 352: 96-103. |
[22] | LI J C, YUAN S J, WANG W, et al. Adsorption characteristics of 4-hydroxy-3-aminophenylarsonic acid (HAPA) onto anaerobic granular sludge[J]. Desalination and Water Treatment, 2015: 1-12. |
[23] | CHIN-PAMPILLO J S, ALFARO-VARGAS A, ROJAS R, et al. Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses[J]. Biomass Conversion and Biorefinery, 2021, 11(5): 1775-1785. |
[24] | PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1): 439-451. |
[25] | YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. |
[26] | AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. The Science of the Total Environment, 2015, 532: 112-126. |
[27] | 张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913-925. |
[28] | 刘洋, 郭少青, 孙万兴, 等. 重质沥青基活性炭的制备研究[J]. 现代化工, 2022, 42(8): 146-150. |
[29] | SESSA F, VEEYEE K F, CANU P. Optimization of biochar quality and yield from tropical timber industry wastes[J]. Waste Management, 2021, 131: 341-349. |
[30] | CHIOU C T, FREED V H, SCHMEDDING D W, et al. Partition coefficient and bioaccumulation of selected organic chemicals[J]. Environmental Science & Technology, 1977, 11(5): 475-478. |
[31] | CHIOU C T, LEE J F, BOYD S A. The surface area of soil organic matter[J]. Environmental Science & Technology, 1990, 24(8): 1164-1166. |
[32] | CHIOU C T, PETERS L J, FREED V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206(4420): 831-832. |
[33] | CHIOU C T, RUTHERFORD D W, MANES M. Sorption of nitrogen and ethylene glycol monoethyl ether (EGME) vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data[J]. Environmental Science & Technology, 1993, 27(8): 1587-1594. |
[34] | FU Q L, HE J Z, BLANEY L, et al. Sorption of roxarsone onto soils with different physicochemical properties[J]. Chemosphere, 2016, 159: 103-112. |
[35] | HUANG W H, CHEN B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal[J]. Journal of Environmental Sciences (China), 2010, 22(10): 1586-1594. |
[36] | 陈宝梁, 周丹丹, 朱利, 等. 生物炭质吸附剂对水中有机污染物的吸附作用及机理[J]. 中国科学, 2008, 38(6):530-537. |
[37] | CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17): 4649-4655. |
[38] | STORCK S, BRETINGER H, MAIER W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis[J]. Applied Catalysis A: General, 1998, 174(1/2): 137-146. |
[39] | SCHREITER I J, SCHMIDT W, SCHÜTH C. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: conclusions from single- and bi-solute experiments[J]. Chemosphere, 2018, 203: 34-43. |
[40] | 李晓军, 李培军, 蔺昕. 土壤中难降解有机污染物锁定机理研究进展[J]. 应用生态学报, 2007, 18(7): 1624-1630. |
[41] | 李莉, 苗明升, 丁俊男, 等. 土壤中锁定残留芘在体外消化系统中的生物可给性[J]. 生态毒理学报, 2009, 4(5): 634-640. |
[42] | NGUYEN T H, CHO H H, POSTER D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J]. Environmental Science & Technology, 2007, 41(4): 1212-1217. |
[43] | 张默, 贾明云, 卞永荣, 等. 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理[J]. 土壤学报, 2015, 52(5): 1106-1115. |
[44] | ZHANG F S, LI Y X, ZHANG G X, et al. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil[J]. Environmental Science and Pollution Research, 2017, 24(10): 9575-9584. |
[45] | KARANFIL T, KILDUFF J E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. priority pollutants[J]. Environmental Science & Technology, 2000, 34(11): 2372. |
[46] | PAULSEN P D, MOORE B C, CANNON F S. Applicability of adsorption equations to argon, nitrogen and volatile organic compound adsorption onto activated carbon[J]. Carbon, 1999, 37(11): 1843-1853. |
[47] | MAHAJAN O P, WALKER P L Jr. Effect of inorganic matter removal from coals and chars on their surface areas[J]. Fuel, 1979, 58(5): 333-337. |
[48] | WEBER W J, HUANG W L. A distributed reactivity model for sorption by soils and sediments. 4. intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environmental Science & Technology, 1996, 30(3): 881-888. |
[49] | XING B S, PIGNATELLO J J, GIGLIOTTI B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environmental Science & Technology, 1996, 30(8): 2432-2440. |
[50] | XING B S, PIGNATELLO J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter[J]. Environmental Science & Technology, 1997, 31(3): 792-799. |
[51] | ZHU L Z, CHEN B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water[J]. Environmental Science & Technology, 2000, 34(14): 2997-3002. |
[52] | CHIOU C T, CHENG J Z, HUNG W N, et al. Resolution of adsorption and partition components of organic compounds on black carbons[J]. Environmental Science & Technology, 2015, 49(15): 9116-9123. |
[53] | 汪艳如, 侯杰发, 郭建华, 等. 冻融循环对牦牛粪生物炭吸附氨氮的影响[J]. 农业环境科学学报, 2017, 36(3): 566-573. |
[54] | 何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11): 3376-3382. |
[55] | LEE J W, KIDDER M, EVANS B R, et al. Characterization of biochars produced from cornstovers for soil amendment[J]. Environmental Science & Technology, 2010, 44(20): 7970-7974. |
[56] | ZHU D Q, KWON S, PIGNATELLO J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J]. Environmental Science & Technology, 2005, 39(11): 3990-3998. |
[57] | SAITO Y, MORI M, SHIDA S, et al. Formaldehyde adsorption and desorption properties of wood-based charcoal[J]. Journal of the Japan Wood Researh Society, 2000, 46 (6): 596-601. |
[58] | LI M Y, SUN W J, WANG Y J, et al. Air permeability of biochar-amended clay cover[J]. Arabian Journal of Geosciences, 2021, 14(8): 732. |
[59] | 冯晓娜, 杨芷, 孙洁, 等. 有机污染物对发光菌和鱼的毒性相关性研究[J]. 生态毒理学报, 2017, 12(3): 687-694. |
[60] | YANG Y N, SHENG G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16): 3635-3639. |
[61] | JONKER M T O, KOELMANS A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science & Technology, 2002, 36(17): 3725-3734. |
[62] | CORNELISSEN G, ELMQUIST M, GROTH I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environmental Science & Technology, 2004, 38(13): 3574-3580. |
[63] | BORNEMANN L C, KOOKANA R S, WELP G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood[J]. Chemosphere, 2007, 67(5): 1033-1042. |
[64] | XIAO B H, YU Z Q, HUANG W L, et al. Black carbon and kerogen in soils and sediments. 2. their roles in equilibrium sorption of less-polar organic pollutants[J]. Environmental Science & Technology, 2004, 38(22): 5842-5852. |
[65] | MIRALLES-CUEVAS S, AUDINO F, OLLER I, et al. Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photoFenton, photo-Fenton-like Fe (III)-EDDS complex and ozonation)[J]. Separation and Purification Technology, 2014, 122: 515-522. |
[66] | CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. |
[67] | ZHENG W, GUO M X, CHOW T, et al. Sorption properties of greenwaste biochar for two triazine pesticides[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 121-126. |
[68] | 代镇, 李伟, 韩娟, 等. 生物炭对土持水能力的影响[J]. 干旱地区农业研究, 2019, 37(6): 265-273. |
[69] | 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16-25. |
[70] | JORDÁ J D, TENT-MANCLÚS J E, CERDÁN M, et al. Characterisation of clays from Alicante Province (SE Spain) for use in the recovery of degraded soils[J]. Environmental Geochemistry and Health, 2022, 44(1): 247-255. |
[71] | 马莉, 吕宁, 冶军, 等. 生物碳对灰漠土有机碳及其组分的影响[J]. 中国生态农业学报, 2012, 20(8): 976-981. |
[72] | WANG J Y, PAN X J, LIU Y L, et al. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and Soil, 2012, 360(1): 287-298. |
[73] | 周志红, 李心清, 邢英, 等. 生物炭对土壤氮素淋失的抑制作用[J]. 地球与环境, 2011, 39(2): 278-284. |
[74] | 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 979-984. |
[75] | YANG Y N, CHUN Y, SHENG G Y, et al. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon[J]. Langmuir, 2004, 20(16): 6736-6741. |
[76] | KALDERIS D, KAYAN B, AKAY S, et al. Adsorption of 2, 4-dichlorophenol on paper sludge/wheat husk biochar: process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2222-2231. |
[77] | ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320. |
[78] | GELL K, VAN GROENIGEN J, CAYUELA M L. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2017-2025. |
[79] | ACIEGO PIETRI J C, BROOKES P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861. |
[80] | ZHEN M N, TANG J C, LI C, et al. Rhamnolipid-modified biochar-enhanced bioremediation of crude oil-contaminated soil and mediated regulation of greenhouse gas emission in soil[J]. Journal of Soils and Sediments, 2021, 21(1): 123-133. |
[81] | AMBADE B, SETHI S S, GIRI B, et al. Characterization, behavior, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the EstuarySediments[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(2): 243-252. |
[82] | GOMEZ-EYLES J L, SIZMUR T, COLLINS C D, et al. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements[J]. Environmental Pollution, 2011, 159(2): 616-622. |
[83] | CHEN B L, YUAN M X, QIAN L B. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers[J]. Journal of Soils and Sediments, 2012, 12(9): 1350-1359. |
[84] | RYCHEN G, JURJANZ S, FOURNIER A, et al. Exposure of ruminants to persistent organic pollutants and potential of decontamination[J]. Environmental Science and Pollution Research, 2014, 21(10): 6440-6447. |
[85] | WANG Y, WANG L, WANG Y J, et al. Measuring the bioavailability of polychlorinated biphenyls to earthworms in soil enriched with biochar or activated carbon using triolein-embedded cellulose acetate membrane[J]. Journal of Soils and Sediments, 2016, 16(2): 527-536. |
[86] | DENYES M J, LANGLOIS V S, RUTTER A, et al. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida[J]. The Science of the Total Environment, 2012, 437: 76-82. |
[87] | GU J Q, ZHOU W Q, JIANG B Q, et al. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil[J]. Chemosphere, 2016, 145: 431-437. |
[88] | DENG L Y, WU C Y, FU L Y, et al. Preparation of biochar and its adsorbing performance evaluation in the petroleum hydrocarbon[J]. Biomass Conversion and Biorefinery, 2022:1-10. |
[89] | YOUSAF U, ALI KHAN A H, FAROOQI A, et al. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil[J]. Chemosphere, 2022, 286(Pt 2): 131782. |
[90] | KEERTHANAN S, JAYASINGHE C, BOLAN N, et al. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil[J]. Chemosphere, 2022, 297: 134073. |
[91] | YANG X B, YING G G, PENG P G, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7915-7921. |
[92] | LI W T, SHAN R F, FAN Y N, et al. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil[J]. Environmental Science and Pollution Research, 2021, 28(4): 4503-4514. |
[1] | YANG Xiaolei, WANG Zhanfu, CHEN Yujia, LU Ping, LIU Zhehui, YAN Shuxian, JIN Sizhe. Study on safety utilization integrated techniques of agronomic measures in Cd contaminated paddy fields [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2023-2027. |
[2] | ZHANG Weiling, GE Furong, XU Jinggao, ZHENG Xuqian, YE Zhengqian. Study on the effect of soil conditioner combined with organic fertilizer on soil fertility and tea safety production in tea garden [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2069-2074. |
[3] | ZHANG Huafeng, ZHANG Xiaopeng, WANG Kan, ZHANG Leichen, LI Linzhang, SHI Jun, HUANG Yunping, HU Ziwei, WANG Yuhong. Effect of nutrient soil from kitchen waste products on the quality of watermelon seedlings [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2100-2103. |
[4] | ZHENG Xiliang, SUN Li, QI Xingjiang, LIANG Senmiao, YU Zheping, ZHANG Qi, ZHANG Shuwen. Correlation analysis between fruit quality indicators and soil fertility factors in Chinese bayberry [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2112-2118. |
[5] | YANG Jianqiang, GAO Jiarui, LIU Chaochao, WANG Qiaoling. Effects of different dosages of soil conditioner on the growth of Puccinellia tenuiflora and soil nutrients [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2138-2142. |
[6] | LIU Ying, CHANG Junfeng, LI Chen, HUANG Wenxing, SHI Junsheng, XU Xiangbo, MA Youhua. Effects of plastic film pollution on farmland soil and crops and its control [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2224-2230. |
[7] | DING Liqun, CHEN Yuhang, ZHANG Mingkui. Study on acidification and compaction characteristics of red soils in subtropical low hilly orchards [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2236-2238. |
[8] | SUN Li, ZHENG Xiliang, LIANG Senmiao, ZHANG Qi, YU Zheping, QI Xingjiang, ZHANG Shuwen. Differential analysis of soil factor affecting the formation of fruit quality in different Myric rubra varieties [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1826-1832. |
[9] | WEN Wei, PAN Jianqing, YU Bo, XIE Jing, MA Junwei, YANG Yan, WANG Feng. Study on the application effect of the main acidification management model for grape cultivated land in Changxing County [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1838-1842. |
[10] | LEI Chunsong, ZHANG Su'e, ZOU Wenhua, ZHONG Lijun, YE Zhengqian. Effects of tea branch biochar on soil fertility and cadmium absorption and transport in rice [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1860-1866. |
[11] | SHEN Jianguo, ZHENG Dongming, LOU Ling, WANG Jingwen, GU Wanfan, LI Agen. Effects of microbial compound fertilizer substitution of conventional chemical fertilizer and its reduced application on rice growth and soil fertility [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1867-1872. |
[12] | LI Lijun, ZHONG Wei, LI Tao. Application of immobilized microorganism technology on soil remediation of farmland in Xiaoqinling gold mining area [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1950-1956. |
[13] | FANG Qijun, CHEN Yinzai. Effect of organic fertilizer application of fish and shrimp scraps on rice production [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1539-1542. |
[14] | ZHANG Wenyong, CHEN Guanghui, CHEN Zhaoming. Effects of different fertilization patterns on yield and soil fertility of double cropping rice [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1547-1550. |
[15] | HAN Xiaojun, QIAO Zhigang. Effects of biochar on uptake and accumulation of trace elements in rice [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1551-1554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||