[1] |
韩风庆, 李占省, 刘玉梅, 等. 青花菜黑腐病发病规律及综合防治措施[J]. 中国蔬菜, 2019 (11): 98-101.
|
[2] |
李立鑫. 青花菜的高产栽培技术要点[J]. 广东蚕业, 2022, 56(5): 51-53.
|
[3] |
LÓPEZ-CHILLÓN M T, CARAZO-DÍAZ C, PRIETO-MERINO D, et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects[J]. Clinical Nutrition, 2019, 38(2): 745-752.
|
[4] |
CHEN G C, KOH W P, YUAN J M, et al. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese Health Study and meta-analysis[J]. The British Journal of Nutrition, 2018, 119(9): 1057-1067.
|
[5] |
RAIOLA A, ERRICO A, PETRUK G, et al. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases[J]. Molecules, 2017, 23(1): 15.
|
[6] |
李占省, 刘玉梅, 方智远, 等. 我国青花菜产业发展现状、存在问题与应对策略[J]. 中国蔬菜, 2019 (4): 1-5.
|
[7] |
张黎黎, 刘玉梅, 田自华, 等. 十字花科蔬菜抗黑腐病育种研究进展[J]. 园艺学报, 2012, 39(9): 1727-1738.
|
[8] |
刘莉莉, 文正华, 单晓政, 等. 青花菜黑腐病致病菌的分离和鉴定[J]. 中国瓜菜, 2018, 31(7): 18-22.
|
[9] |
RUBEL M H, ROBIN A H K, NATARAJAN S, et al. Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea[J]. International Journal of Molecular Sciences, 2017, 18(12): 2523.
|
[10] |
ALVAREZ A M. Serological, pathological, and genetic diversity among strains of Xanthomonas campestris Infecting crucifers[J]. Phytopathology, 1994, 84(12): 1449.
|
[11] |
许园园, 邢苗苗, 严继勇, 等. 甘蓝黑腐病致病菌分离与种质资源抗性鉴定[J]. 江苏农业科学, 2022, 50(10): 98-103.
|
[12] |
VICENTE J G, CONWAY J, ROBERTS S J, et al. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars[J]. Phytopathology, 2001, 91(5): 492-499.
|
[13] |
AFRIN K, RAHIM M A, RUBEL M H, et al. Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers[J]. Canadian Journal of Plant Science, 2018, 98(5): 1119-1125.
|
[14] |
AFRIN K S, RAHIM M A, RUBEL M H, et al. Development of PCR-based molecular marker for detection of Xanthomonas campestris pv. campestris race 6, the causative agent of black rot of brassicas[J]. The Plant Pathology Journal, 2020, 36(5):418-427.
|
[15] |
AFRIN K S, RAHIM M A, JUNG H J, et al. Development of molecular marker through genome realignment for specific detection of Xanthomonas campestris pv. campestris race 5, a pathogen of black rot disease[J]. Journal of Microbiology and Biotechnology, 2019, 29(5): 785-793.
|
[16] |
WILLIAMS P. Black rot: a continuing threat to world crucifers[J]. Plant Disease, 1980, 64:736-742.
|
[17] |
SCHAAD N W. A qualitative method for detecting Xanthomonas campestris in crucifer seed[J]. Phytopathology, 1975, 65(9): 1034.
|
[18] |
ALVAREZ A M. Black rot of cabbage in Hawaii: Inoculum source and disease incidence[J]. Phytopathology, 1978, 68(10):1456.
|
[19] |
SUTTON J C, WILLIAMS P H. Relation of xylem plugging to black rot lesion development in cabbage[J]. Canadian Journal of Botany, 1970, 48(2):391-401.
|
[20] |
SMITH E F. Bacteria in relation to plant diseases[M]. Washington, D.C: Carnegie Institution of Washington, 1905.
|
[21] |
季核亮, 邢堃, 陶熠, 等. 花椰菜黑腐病病害分析及抗病品种推荐[J]. 长江蔬菜, 2022 (19):61-62.
|
[22] |
李永平, 沈立, 何道根. 浙江西兰花产业现状及国产品种在推广过程中存在的问题和对策[J]. 浙江农业科学, 2017, 58(7): 1175-1177.
|
[23] |
施俊生. 国家西兰花良种重大科研联合攻关进展及对策建议[J]. 浙江农业科学, 2019, 60(12): 2223-2225.
|
[24] |
简元才, 郝立新, 贾翠莹. 青花菜对芜菁花叶病毒病(TuMV)和黑腐病抗病性材料的鉴定及筛选[J]. 北京农业科学, 1993(5):25-27.
|
[25] |
姚玉荣, 霍建飞, 郝永娟, 等. 花椰菜苗期黑腐病抗、感品种转录组差异表达分析[J]. 山东农业科学, 2020, 52(7): 1-6.
|
[26] |
肖崇刚. 一种甘蓝黑腐病接种新方法[J]. 植物保护, 1994, 20(5): 35-35.
|
[27] |
芦燕. 大白菜黑腐病病原菌鉴定和抗病性鉴定方法研究[D]. 杨凌: 西北农林科技大学, 2008.
|
[28] |
李永镐, 徐丽波. 甘蓝黑腐病苗期抗病性鉴定方法的研究[J]. 东北农学院学报, 1990, 21(2): 125-129.
|
[29] |
张玉勋, 徐月军, 张炎光, 等. 萝卜黑腐病菌致病性测定及苗期抗性鉴定方法的初步研究[J]. 山东农业科学, 1999, 31(2): 34-36.
|
[30] |
张玉勋, 曲士松, 黄宝勇, 等. 萝卜种质资源抗黑腐病鉴定[J]. 山东农业科学, 2000, 32(6): 33-34.
|
[31] |
STAUB T. Factors influencing black rot lesion development in resistant and susceptible cabbage[J]. Phytopathology, 1972, 62(7): 722.
|
[32] |
PINEDA M, PÉREZ-BUENO M L, BARÓN M. Novel vegetation indices to identify broccoli plants infected with Xanthomonas campestris pv. campestris[J]. Frontiers in Plant Science, 2022, 13: 790268.
|
[33] |
施俊生. 国家西兰花良种重大科研联合攻关2019年度十大优秀品种[J]. 浙江农业科学, 2020, 61(5): 838-840.
|
[34] |
TAYLOR J D, CONWAY J, ROBERTS S J, et al. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica Genomes[J]. Phytopathology, 2002, 92(1): 105-111.
|
[35] |
刘玉梅, 孙培田, 方智远, 等. 青花菜抗源材料的筛选和利用[J]. 中国蔬菜, 1996(6): 25-28.
|
[36] |
TONGUÇ M, GRIFFITHS P D. Evaluation of Brassica carinata accessions for resistance to black rot (Xanthomonas campestris pv. campestris)[J]. HortScience, 2004, 39(5): 952-954.
|
[37] |
杨竹莹. 中晚熟抗黑腐病青花菜新品种种子生产与高产栽培技术研究[D]. 杨凌: 西北农林科技大学, 2007.
|
[38] |
姚星伟, 牛国保, 单晓政, 等. 花椰菜苗期黑腐病抗病性鉴定[J]. 黑龙江农业科学, 2018 (8): 39-42.
|
[39] |
王桂香, 严红, 曾兴莹, 等. 花椰菜:黑芥体细胞杂交获得抗黑腐病异附加系新材料[J]. 园艺学报, 2011, 38(10): 1901-1910.
|
[40] |
QIAN W, JIA Y T, REN S X, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris[J]. Genome Research, 2005, 15(6): 757-767.
|
[41] |
DA SILVA A C R, FERRO J A, REINACH F C, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature, 2002, 417: 459-463.
|
[42] |
VORHÖLTER F J, SCHNEIKER S, GOESMANN A, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis[J]. Journal of Biotechnology, 2008, 134(1/2): 33-45.
|
[43] |
RYAN R P, FOUHY Y, LUCEY J F, et al. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris[J]. Molecular Microbiology, 2007, 63(2): 429-442.
|
[44] |
TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular and General Genetics, 1991, 226(3): 409-417.
|
[45] |
LI R F, REN P D, LIU Q Q, et al. McvR, a single domain response regulator regulates motility and virulence in the plant pathogen Xanthomonas campestris[J]. Molecular Plant Pathology, 2022, 23(5): 649-663.
|
[46] |
LIAO C T, LIU Y F, CHIANG Y C, et al. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris[J]. Research in Microbiology, 2016, 167(4): 299-312.
|
[47] |
CHOU F L, CHOU H C, LIN Y S, et al. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot[J]. Biochemical and Biophysical Research Communications, 1997, 233(1): 265-269.
|
[48] |
THOWTHAMPITAK J, SHAFFER B T, PRATHUANGWONG S, et al. Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean[J]. Phytopathology, 2008, 98(12): 1252-1260.
|
[49] |
TORRES P S, MALAMUD F, RIGANO L A, et al. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris[J]. Environmental Microbiology, 2007, 9(8): 2101-2109.
|
[50] |
FURUTANI A, TSUGE S, OHNISHI K, et al. Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae[J]. Journal of Bacteriology, 2004, 186(5): 1374-1380.
|
[51] |
METZ M, DAHLBECK D, MORALES C Q, et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana[J]. The Plant Journal, 2005, 41(6): 801-814.
|
[52] |
BAI K H, YAN H Y, CHEN X, et al. The role of RelA and SpoT on ppGpp production, stress response, growth regulation, and pathogenicity in Xanthomonas campestris pv. campestris[J]. Microbiology Spectrum, 2021, 9(3): e0205721.
|
[53] |
LIAO C T, LI C H, CHANG H C, et al. The lolB gene in Xanthomonas campestris pv. campestris is required for bacterial attachment, stress tolerance, and virulence[J]. BMC Microbiology, 2022, 22(1): 17.
|
[54] |
江汉民, 郝擘, 于雪梅, 等. 花椰菜抗黑腐病消减cDNA文库的构建和分析[J]. 南开大学学报(自然科学版), 2010, 43(2): 15-22.
|
[55] |
吴晓丽, 李建民, 段留生, 等. 花椰菜幼苗叶片抗氧化酶系统与抗黑腐病关系的研究[J]. 植物病理学报, 2005, 35(6): 509-513.
|
[56] |
RIBEIRO D G, DA CUNHA G, SANTOS C, et al. Brassica oleracea resistance-related proteins identified at an early stage of black rot disease[J]. Physiological and Molecular Plant Pathology, 2018, 104(1): 9-14.
|
[57] |
古瑜, 毛英伟, 赵前程, 等. 花椰菜(Brassica oleracea var. botrytis)抗黑腐病差异表达cDNA片段的克隆及功能的初步研究[J]. 南开大学学报(自然科学版), 2008, 41(4): 42-48.
|
[58] |
SOENGAS P, HAND P, VICENTE J G, et al. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa[J]. Theoretical and Applied Genetics, 2007, 114(4): 637-645.
|
[59] |
DOULLAH M, MOHSIN G M, ISHIKAWA K, et al. Construction of a linkage map and QTL analysis for black rot resistance in Brassica oleracea L[J]. International Journal of Natural Sciences, 1970, 1(1): 1-6.
|
[60] |
KIFUJI Y, HANZAWA H, TERASAWA Y, et al. QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers[J]. Euphytica, 2013, 190(2): 289-295.
|
[61] |
LEE J, IZZAH N K, JAYAKODI M, et al. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage[J]. BMC Plant Biology, 2015, 15: 32.
|
[62] |
AFRIN K S, RAHIM M A, PARK J I, et al. Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata)[J]. Molecular Biology Reports, 2018, 45(5): 773-785.
|
[63] |
TONGUÇ M, GRIFFITHS P D. Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A 19182, using embryo rescue[J]. Euphytica, 2004, 136(3): 313-318.
|
[64] |
LV H H, FANG Z Y, YANG L M, et al. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era[J]. Horticulture Research, 2020, 7: 34.
|
[65] |
CRUZ J, TENREIRO R, CRUZ L. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X-campestris pv. campestris races[J]. Journal of Plant Pathology, 2017, 99(2): 403-414.
|