Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (7): 1770-1778.DOI: 10.16178/j.issn.0528-9017.20240664
Previous Articles Next Articles
ZHANG Hongyan(), JIN Can, LUO Wen(
)
Received:
2024-08-19
Online:
2025-07-11
Published:
2025-07-28
CLC Number:
ZHANG Hongyan, JIN Can, LUO Wen. Research progress of Kunitz-type serine protease inhibitors[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1770-1778.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240664
[1] | LEUNG D, ABBENANTE G, FAIRLIE D P. Protease inhibitors: current status and future prospects[J]. Journal of Medicinal Chemistry, 2000, 43(3): 305-341. |
[2] | RANASINGHE S, MCMANUS D P. Structure and function of invertebrate Kunitz serine protease inhibitors[J]. Developmental & Comparative Immunology, 2013, 39(3): 219-227. |
[3] | 刘云杨, 蒋帅, 李谦, 等. Kunitz型丝氨酸蛋白酶抑制剂研究进展[J]. 生物工程学报, 2021, 37(11): 3988-4000. |
[4] | 刘岳青, 马林源, 陈开廷, 等. 蜱源Kunitz型丝氨酸蛋白酶抑制分子的结构与功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 625-630. |
[5] | 牛蓓, 李锐, 杨林, 等. 一个麻风树Kunitz型蛋白酶抑制剂基因的克隆和鉴定[J]. 四川大学学报(自然科学版), 2016, 53(5): 1169-1176. |
[6] | SCHMIDT M C B, MORAIS K L P, DE ALMEIDA M E S, et al. Amblyomin-X, a recombinant Kunitz-type inhibitor, regulates cell adhesion and migration of human tumor cells[J]. Cell Adhesion & Migration, 2020, 14(1): 129-138. |
[7] | 罗玉娇, 舒衡平, 李滨, 等. 虎纹捕鸟蛛Kunitz型毒素基因的分子改造和表达[J]. 中国病原生物学杂志, 2016, 11(8): 677-684. |
[8] | 陈爽, 梁健, 张荣庆. 合浦珠母贝丝氨酸蛋白酶抑制因子基因pfser1克隆与表达[J]. 广东海洋大学学报, 2020, 40(1): 1-7. |
[9] | XU X, LIU J X, WANG Y J, et al. Kunitz-type serine protease inhibitor is a novel participator in anti-bacterial and anti-inflammatory responses in Japanese flounder (Paralichthys olivaceus)[J]. Fish & Shellfish Immunology, 2018, 80: 22-30. |
[10] | KUNITZ M, NORTHROP J H. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound[J]. The Journal of General Physiology, 1936, 19(6): 991-1007. |
[11] | MISHRA M. Evolutionary aspects of the structural convergence and functional diversification of Kunitz-domain inhibitors[J]. Journal of Molecular Evolution, 2020, 88(7): 537-548. |
[12] | 袁春华, 梁宋平. Kunitz型丝氨酸蛋白酶抑制剂结构与功能研究[J]. 生命科学研究, 2003, 7(2): 110-115. |
[13] | ANTUCH W, BERNDT K D, CHÁVEZ M A, et al. The NMR solution structure of a Kunitz-type proteinase inhibitor from the sea Anemone Stichodactyla helianthus[J]. European Journal of Biochemistry, 1993, 212(3): 675-684. |
[14] | PRITCHARD L, DUFTON M J. Evolutionary trace analysis of the Kunitz/BPTI family of proteins: functional divergence may have been based on conformational adjustment[J]. Journal of Molecular Biology, 1999, 285(4): 1589-1607. |
[15] | CARLACCI L. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water[J]. Biopolymers, 2001, 58(4): 359-373. |
[16] | KROWARSCH D, OTLEWSKI J. Amino-acid substitutions at the fully exposed P1 site of bovine pancreatic trypsin inhibitor affect its stability[J]. Protein Science, 2001, 10(4): 715-724. |
[17] | SCHEIDIG A J, HYNES T R, PELLETIER L A, et al. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer’s amyloid β-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities[J]. Protein Science, 1997, 6(9): 1806-1824. |
[18] | 时辉宁, 钟玉绪, 丁日高, 等. 组织因子途径抑制物-2的结构及其生物学作用研究进展[J]. 中国医药生物技术, 2009, 4(3): 233-235. |
[19] | PEERSCHKE E I B, PETROVAN R J, GHEBREHIWET B, et al. Tissue factor pathway inhibitor-2 (TFPI-2) recognizes the complement and kininogen binding protein gC1qR/p33 (gC1qR): implications for vascular inflammation[J]. Thrombosis and Haemostasis, 2004, 92(4): 811-819. |
[20] | WOOD J P, ELLERY P E R, MARONEY S A, et al. Biology of tissue factor pathway inhibitor[J]. Blood, 2014, 123(19): 2934-2943. |
[21] | KAMEI S, PETERSEN L C, SPRECHER C A, et al. Inhibitory properties of human recombinant Arg 24 →Gln type-2 tissue factor pathway inhibitor (R24Q TFPI-2)[J]. Thrombosis Research, 1999, 94(3): 147-152. |
[22] | SPRECHER C A, KISIEL W, MATHEWES S, et al. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(8): 3353-3357. |
[23] | 马静, 高金亮. 蜱Kunitz型蛋白酶抑制剂的抗凝机制研究进展[J]. 中国媒介生物学及控制杂志, 2021, 32(1): 111-114. |
[24] | SHIMOMURA T, DENDA K, KITAMURA A, et al. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor[J]. Journal of Biological Chemistry, 1997, 272(10): 6370-6376. |
[25] | HONG Z, NOWAKOWSKI M, SPRONK C, et al. The solution structure of the MANEC-type domain from hepatocyte growth factor activator inhibitor-1 reveals an unexpected PAN/apple domain-type fold[J]. Biochemical Journal, 2015, 466(2): 299-309. |
[26] | LIU M, YUAN C, JENSEN J K, et al. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition[J]. The Journal of Biological Chemistry, 2017, 292(20): 8412-8423. |
[27] | BATISTA I F C, CHUDZINSKI-TAVASSI A M, FARIA F, et al. Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae)[J]. Toxicon, 2008, 51(5): 823-834. |
[28] | BATISTA I F C, RAMOS O H P, VENTURA J S, et al. A new factor Xa inhibitor from Amblyomma cajennense with a unique domain composition[J]. Archives of Biochemistry and Biophysics, 2010, 493(2): 151-156. |
[29] | BRANCO V G, IQBAL A, ALVAREZ-FLORES M P, et al. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2016, 1864(10): 1428-1435. |
[30] | LOBBA A R M, ALVAREZ-FLORES M P, FESSEL M R, et al. A Kunitz-type inhibitor from tick salivary glands: a promising novel antitumor drug candidate[J]. Frontiers in Molecular Biosciences, 2022, 9: 936107. |
[31] | PASQUALOTO K F M, BALAN A, BARRETO S A, et al. Structural findings and molecular modeling approach of a TFPI-like inhibitor[J]. Protein and Peptide Letters, 2014, 21(5): 452-457. |
[32] | JIN C, JIANG R, ZHANG Y H, et al. The dual role of eppin in immunity and biomineralization during nacreous layer formation in mollusks[J]. CrystEngComm, 2023, 25(36): 5160-5173. |
[33] | JIN C, LIU X J, LI J L, et al. A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii[J]. Fish & Shellfish Immunology, 2019, 89: 437-447. |
[34] | CLAUSS A, LILJA H, LUNALL A. A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein[J]. Biochemical Journal, 2002, 368(Pt 1): 233-242. |
[35] | GOMES A A S, SANTOS N C M, ROSA L R, et al. Interactions of the male contraceptive target Eppin with semenogelin-1 and small organic ligands[J]. Scientific Reports, 2023, 13(1): 14382. |
[36] | SCOTT A, GLASGOW A, SMALL D, et al. Characterisation of eppin function: expression and activity in the lung[J]. The European Respiratory Journal, 2017, 50(1): 1601937. |
[37] | WAXMAN L, SMITH D E, ARCURI K E, et al. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa[J]. Science, 1990, 248(4955): 593-596. |
[38] | WAN H, LEE K S, KIM B Y, et al. A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor[J]. PLoS One, 2013, 8(1): e53343. |
[39] | IBELLI A M G, KIM T K, HILL C C, et al. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting[J]. International Journal for Parasitology, 2014, 44(6): 369-379. |
[40] | CIPRANDI A, DE OLIVEIRA S K, MASUDA A, et al. Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor[J]. Experimental Parasitology, 2006, 114(1): 40-46. |
[41] | KATO N, IWANAGA S, OKAYAMA T, et al. Identification and characterization of the plasma kallikrein-kinin system inhibitor, haemaphysalin, from hard tick, Haemaphysalis longicornis[J]. Thrombosis and Haemostasis, 2005, 93(2): 359-367. |
[42] | KATO N, OKAYAMA T, ISAWA H, et al. Contribution of the N-terminal and C-terminal domains of haemaphysalin to inhibition of activation of plasma kallikrein-kinin system[J]. Journal of Biochemistry, 2005, 138(3): 225-235. |
[43] | MORAIS K L P, PACHECO M T F, BERRA C M, et al. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell[J]. Molecular and Cellular Biochemistry, 2016, 415(1): 119-131. |
[44] | DREWES C C, DIAS R Y S, HEBEDA C B, et al. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis[J]. Toxicon, 2012, 60(3): 333-340. |
[45] | CHUDZINSKI-TAVASSI A M, DE-SÁ-JÚNIOR P L, SIMONS S M, et al. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system[J]. Toxicon, 2010, 56(7): 1145-1154. |
[46] | ROY U K, LAVIGNAC N, RAHMAN A M, et al. Purification of lectin and Kunitz trypsin inhibitor from soya seeds[J]. Journal of Chromatographic Science, 2018, 56(5): 436-442. |
[47] | YANG C, ZHANG J J, ZHANG X P, et al. Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression[J]. World Journal of Gastroenterology, 2019, 25(25): 3196-3206. |
[48] | FANG E F, BAH C S, WONG J H, et al. A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration[J]. Archives of Toxicology, 2012, 86(2): 293-304. |
[49] | 陈丹丹, 何南海, 张名昌. 日本囊对虾Kunitz型蛋白酶抑制剂在毕赤酵母中的表达纯化及活性分析[J]. 生物工程学报, 2008, 24(3): 500-503. |
[50] | LEBOULLE G, CRIPPA M, DECREM Y, et al. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks[J]. Journal of Biological Chemistry, 2002, 277(12): 10083-10089. |
[51] | LEBOULLE G, ROCHEZ C, LOUAHED J, et al. Isolation of Ixodes ricinus salivary gland mRNA encoding factors induced during blood feeding[J]. The American Journal of Tropical Medicine and Hygiene, 2002, 66(3): 225-233. |
[52] | PREVOT P P, ADAM B, BOUDJELTIA K Z, et al. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus[J]. Journal of Biological Chemistry, 2006, 281(36): 26361-26369. |
[53] | CHMELAR J, OLIVEIRA C J, REZACOVA P, et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation[J]. Blood, 2011, 117(2): 736-744. |
[54] | PÁLENÍKOVÁ J, LIESKOVSKÁ J, LANGHANSOVÁ H, et al. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway[J]. Infection and Immunity, 2015, 83(5): 1949-1956. |
[55] | ZARBOCK A, POLANOWSKA-GRABOWSKA R K, LEY K. Platelet-neutrophil-interactions: linking hemostasis and inflammation[J]. Blood Reviews, 2007, 21(2): 99-111. |
[56] | YU Y F, CAO J, ZHOU Y Z, et al. Isolation and characterization of two novel serpins from the tick Rhipicephalus haemaphysaloides[J]. Ticks and Tick-Borne Diseases, 2013, 4(4): 297-303. |
[57] | JIN C, CHENG K, JIANG R, et al. A novel Kunitz-type serine protease inhibitor (HcKuSPI) is involved in antibacterial defense in innate immunity and participates in shell formation of Hyriopsis cumingii[J]. Marine Biotechnology, 2024, 26(1): 37-49. |
[58] | DIB H X, DE OLIVEIRA D G L, DE OLIVEIRA C F R, et al. Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp[J]. Archives of Microbiology, 2019, 201(2): 223-233. |
[59] | DE OLIVEIRA C F R, OLIVEIRA C T, TAVEIRA G B, et al. Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species[J]. International Journal of Biological Macromolecules, 2018, 119: 645-653. |
[60] | MEHMOOD S, IMRAN M, ALI A, et al. Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity[J]. Turk Biyoloji Dergisi, 2020, 44(4): 188-200. |
[61] | CAI X X, XIE X L, FU N Y, et al. Physico-chemical and antifungal properties of a trypsin inhibitor from the roots of Pseudostellaria heterophylla[J]. Molecules, 2018, 23(9): 2388. |
[62] | ZHU J Y, HE Y X, YAN X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6: 126. |
[63] | DE MORAES MANZATO V, DI SANTO C, TORQUATO R J S, et al. Boophilin D1, a Kunitz type protease inhibitor, as a source of inhibitors for the ZIKA virus NS2B-NS3 protease[J]. Biochimie, 2023, 214: 96-101. |
[64] | STEINBUCH M, LOEB J. Isolation of an alpha2-globulin from human plasma[J]. Nature, 1961, 192: 1196. |
[65] | SALIER J P. Inter-α-trypsin inhibitor: emergence of a family within the Kunitz-type protease inhibitor superfamily[J]. Trends in Biochemical Sciences, 1990, 15(11):435-439. |
[66] | HOCHSTRASSER K, WACHTER E, ALBRECHT G J, et al. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-alpha-trypsin inhibitor, X. the amino-acid sequences of the trypsin-released inhibitors from horse and pig inter-alpha-trypsin inhibitors[J]. Biological Chemistry Hoppe-Seyler, 1987, 368(1): 727-732. |
[1] | MA Yuan, XU Dongmei, LI Yongkang, SA Chunning, CHANG Yiran, KANG Rulong. Effect of mixed sowing on component allocation and phenotypic traits of Agropyron mongolicum [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1404-1411. |
[2] | HONG Zhihui, KE Hanyun, ZHAO Shuaifeng, HU Xuanxiang, HUANG Yanping, XU Yunhong, PAN Xiaozhi, QIU Zhiqiang, WENG Bingxin, XIE Shengwang. Analysis of insect community structure in rice field under monitoring lamp [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1460-1466. |
[3] | XU Mengbin, ZHOU Xing. Screening and demonstration of semi-wintering wheat varieties in Jiangsu region along Huaihe River [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 897-903. |
[4] | TANG Xiaowei, ZHANG Ningning, LIU Chen, HENG Yan, QU Xiaohui, SHAO Heping. Different water and fertilizer treatments on the ornamental traits and root activity of Phalaenopsis aphrodite [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 973-978. |
[5] | GUO Ziqing, ZHOU Qin, LOU Tingting, SHENG Ke, ZHOU Wanguan, XU Cheng, ZHU Siyi, ZHU Pu. Comprehensive evaluation of 11 varieties of fast-growing leafy vegetables in early spring based on the membership function method [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 349-353. |
[6] | YANG Chunya, WU Dongyang, TAN Huiling, YE Yu, ZHAO Zhongqiu, LI Yongtao, XU Huijuan. Effects of pig manure instead of partial nitrogen fertilizer on soil quality, yield and vitamin C content of Chinese flowering cabbage [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 354-362. |
[7] | SHEN Wenbin. Analysis of management strategies and restoration potential for native herbaceous plant communities in Shanghai Guangfulin Country Park [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2125-2131. |
[8] | XIONG Xue, DONG Jianxin, LI Yanan, ZHU Guofen, DING Xiaosong. Comparison of drought resistance during germination of four perennial ryegrass varieties [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2132-2137. |
[9] | FANG Pingping, ZHANG Ting, WEI Jing, WANG Xueyan, LI Chaosen, LIU Huiqin, WAN Hongjian, GUO Qinwei. Genetic diversity analysis of 64 white-fruited pepper germplasm resources [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1056-1063. |
[10] | CAI Xinyi, XIANG Binghan, PAN Sufeng, YING Junjie, YAN Chengjin. Weed community composition in the hilly wheat area of eastern Zhejiang Province [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(3): 661-666. |
[11] | Cheng YANG, Yongfeng AI, Bowen LU, Dajiang SONG, Fenghua PAN. Effect of structural optimization on yield and quality of tobacco upper leaf in Tongren [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(2): 307-313. |
[12] | Xiaoxiang CHEN, Wenjun ZHANG, Zhengguang ZHAI, Zhiqiang XU, Huabing LIU, Yongjian ZHONG, Zhimin JIANG. PPI network analysis of differentially expressed mRNA in the roots of tobacco varieties resistant to Meloidogyne incongnita (Kofold&White) Chitwood [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(2): 395-400. |
[13] | WU Jia, CHEN Ying. Opportunities, challenges and case practice of digital empowerment for future rural development in Zhejiang Province [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(12): 2819-2825. |
[14] | LI Guangxi, TANG Xubing, ZHEN Anzhong, LEI Jiazhong, YANG Hao, YANG Zhiji, DUAN Kaiwei, FU Yanyan, LU Yao. Optimization measures of leaf structure of sun-dried yellow tobacco Yunshai 1 [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(11): 2576-2581. |
[15] | SUN Xiaoyu, DAI Dejiang, FANG Hui, CHEN Hong. Effects of regional rice cropping structure changes on the occurrence of the population of Chilo suppressalis [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(11): 2645-2649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||