Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (6): 1297-1307.DOI: 10.16178/j.issn.0528-9017.20240808
Previous Articles Next Articles
MA Shuangshuang1(), HUANG Lingling2, WANG Wei1, YANG Yongdan1, ZHAI Rongrong2, YE Jing2, WU Mingming2, YE Shenghai2,*(
)
Received:
2024-10-18
Online:
2025-06-11
Published:
2025-06-23
CLC Number:
MA Shuangshuang, HUANG Lingling, WANG Wei, YANG Yongdan, ZHAI Rongrong, YE Jing, WU Mingming, YE Shenghai. Progress in molecular mechanism research of indica-japonica hybrid rice[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1297-1307.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240808
位点 | Chr. | 不育性 | 杂交组合 | 参考文献 | 位点 | Chr. | 不育性 | 杂交组合 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
S37 | 1 | 雌/雄 | 粳稻×非洲栽培稻 | [ | S18 | 11 | 雄 | 籼稻×粳稻 | [ |
S40 | 1 | 雌/雄 | 长雄野生稻×籼稻 | [ | S19 | 3 | 雄 | 粳稻×非洲栽培稻 | [ |
S1 | 6 | 雌/雄 | 亚洲栽培稻×非洲栽培稻 | [ | S20 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S6 | 6 | 雌/雄 | 亚洲栽培稻×普通野生稻 | [ | S21 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S11(t) | 11 | 雌/雄 | 籼稻×粳稻 | [ | S22 | 2 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S5 | 6 | 雄 | 籼稻×粳稻 | [ | S23 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S7 | 7 | 雄 | Aus稻×籼稻/粳稻 | [ | S24(t) | 5 | 雌 | 籼稻×粳稻 | [ |
S8 | 6 | 雄 | 籼稻×粳稻 | [ | S25(t) | 12 | 雌 | 温带粳稻×籼稻 | [ |
S9 | 4 | 雄 | 籼稻×粳稻/爪哇稻 | [ | S33(t) | 3 | 雌 | 温带粳稻×杂草稻 | [ |
S10 | 6 | 雄 | 籼稻×粳稻/杂草稻 | [ | S34(t) | 11 | 雌 | 温带粳稻×杂草稻 | [ |
S15 | 12 | 雄 | 籼稻× Aus稻 | [ | S35 | 1 | 雌 | 温带粳稻×籼稻 | [ |
S16 | 1 | 雄 | 爪哇稻×籼稻/粳稻 | [ | S51 | 1 | 雄 | 南方野生稻×粳稻 | [ |
S17 | 12 | 雄 | 爪哇稻×粳稻 | [ | S52 | 2 | 雄 | 南方野生稻×粳稻 | [ |
S26(t) | 6 | 雄 | 籼稻×粳稻 | [ | S53 | 2 | 雄 | 南方野生稻×粳稻 | [ |
S29(t) | 2 | 雄 | 爪哇稻×粳稻 | [ | S54 | 7 | 雄 | 南方野生稻×粳稻 | [ |
S30(t) | 7 | 雄 | 籼稻×杂草稻 | [ | S55 | 7 | 雄 | 南方野生稻×粳稻 | [ |
S31(t) | 5 | 雄 | 籼稻×粳稻 | [ | S58 | 1 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S32(t) | 2 | 雄 | 爪哇稻×亚洲栽培稻 | [ | Sa | 1 | 雌 | 温带粳稻×籼稻 | [ |
S35(t) | 12 | 雄 | 籼稻×粳稻 | [ | Sb | 5 | 雌 | 籼稻×粳稻 | [ |
Sp | 11 | 雄 | 籼稻×粳稻 | [ | Sc | 3 | 雌 | 温带粳稻×籼稻 | [ |
hsa1 | 12 | 雄 | 籼稻×粳稻 | [ | Sd | 1 | 雌 | 温带粳稻×籼稻 | [ |
hsa2 | 8 | 雌 | 籼稻×粳稻 | [ | Se | 12 | 雌 | 温带粳稻×籼稻 | [ |
hsa3 | 9 | 雌 | 籼稻×粳稻 | [ | Sf | — | 雌 | 温带粳稻×籼稻 | [ |
f1 | 1 | 雄 | 籼稻×粳稻 | [ | qS12 | 12 | 雌 | 籼稻×粳稻 | [ |
f3 | 3 | 雄 | 籼稻×粳稻 | [ | qPS-1 | 1 | 雌 | 籼稻×粳稻 | [ |
f8 | 8 | 雄 | 籼稻×粳稻 | [ | pss1 | 8 | 雄 | 籼稻×粳稻 | [ |
qSS-2 | 2 | — | 籼稻/粳稻×粳稻 | [ | DPL1 | 1 | 雌 | 温带粳稻× aus | [ |
qSS-8a | 8 | 雄 | 籼稻/粳稻×粳稻 | [ | DPL2 | 6 | 雌 | 温带粳稻× aus | [ |
qSS-8b | 8 | 雄 | 籼稻/粳稻×粳稻 | [ | f5 | 5 | 雌 | 温带粳稻×籼稻 | [ |
Ef1 | 1 | 雌 | 籼稻×籼稻 | [ | Pf12 | 12 | 雄 | 籼稻×粳稻 | [ |
ESA1 | 1 | 雌 | 籼稻×普通野生稻 | [ | Pf3 | 3 | 雄 | 籼稻×籼稻 | [ |
qSIG3.1 | 3 | 雌 | 籼稻×粳稻 | [ | Pf5.2 | 5 | 雄 | 籼稻×粳稻 | [ |
qSIG3.2 | 3 | 雌 | 籼稻×粳稻 | [ | Pf8 | 8 | 雄 | 籼稻×粳稻 | [ |
qSIG6.1 | 6 | 雌 | 籼稻×粳稻 | [ | Pf10 | 10 | 雄 | 籼稻×粳稻 | [ |
qSIG12.1 | 12 | 雌 | 籼稻×粳稻 | [ | Sf1.2 | 1 | 小穗 | 籼稻×粳稻 | [ |
S3 | 9 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ | Sf3 | 3 | 小穗 | 籼稻×籼稻 | [ |
S12 | 12 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ | Sf7 | 7 | 小穗 | 籼稻×粳稻 | [ |
S13 | 1 | 雄 | 亚洲栽培稻×长雄野生稻 | [ | Sf9 | 9 | 小穗 | 籼稻×粳稻 | [ |
Table 1 Identified hybrid sterility loci in Asian cultivated rice (Oryza sativa)
位点 | Chr. | 不育性 | 杂交组合 | 参考文献 | 位点 | Chr. | 不育性 | 杂交组合 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
S37 | 1 | 雌/雄 | 粳稻×非洲栽培稻 | [ | S18 | 11 | 雄 | 籼稻×粳稻 | [ |
S40 | 1 | 雌/雄 | 长雄野生稻×籼稻 | [ | S19 | 3 | 雄 | 粳稻×非洲栽培稻 | [ |
S1 | 6 | 雌/雄 | 亚洲栽培稻×非洲栽培稻 | [ | S20 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S6 | 6 | 雌/雄 | 亚洲栽培稻×普通野生稻 | [ | S21 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S11(t) | 11 | 雌/雄 | 籼稻×粳稻 | [ | S22 | 2 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S5 | 6 | 雄 | 籼稻×粳稻 | [ | S23 | 7 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S7 | 7 | 雄 | Aus稻×籼稻/粳稻 | [ | S24(t) | 5 | 雌 | 籼稻×粳稻 | [ |
S8 | 6 | 雄 | 籼稻×粳稻 | [ | S25(t) | 12 | 雌 | 温带粳稻×籼稻 | [ |
S9 | 4 | 雄 | 籼稻×粳稻/爪哇稻 | [ | S33(t) | 3 | 雌 | 温带粳稻×杂草稻 | [ |
S10 | 6 | 雄 | 籼稻×粳稻/杂草稻 | [ | S34(t) | 11 | 雌 | 温带粳稻×杂草稻 | [ |
S15 | 12 | 雄 | 籼稻× Aus稻 | [ | S35 | 1 | 雌 | 温带粳稻×籼稻 | [ |
S16 | 1 | 雄 | 爪哇稻×籼稻/粳稻 | [ | S51 | 1 | 雄 | 南方野生稻×粳稻 | [ |
S17 | 12 | 雄 | 爪哇稻×粳稻 | [ | S52 | 2 | 雄 | 南方野生稻×粳稻 | [ |
S26(t) | 6 | 雄 | 籼稻×粳稻 | [ | S53 | 2 | 雄 | 南方野生稻×粳稻 | [ |
S29(t) | 2 | 雄 | 爪哇稻×粳稻 | [ | S54 | 7 | 雄 | 南方野生稻×粳稻 | [ |
S30(t) | 7 | 雄 | 籼稻×杂草稻 | [ | S55 | 7 | 雄 | 南方野生稻×粳稻 | [ |
S31(t) | 5 | 雄 | 籼稻×粳稻 | [ | S58 | 1 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ |
S32(t) | 2 | 雄 | 爪哇稻×亚洲栽培稻 | [ | Sa | 1 | 雌 | 温带粳稻×籼稻 | [ |
S35(t) | 12 | 雄 | 籼稻×粳稻 | [ | Sb | 5 | 雌 | 籼稻×粳稻 | [ |
Sp | 11 | 雄 | 籼稻×粳稻 | [ | Sc | 3 | 雌 | 温带粳稻×籼稻 | [ |
hsa1 | 12 | 雄 | 籼稻×粳稻 | [ | Sd | 1 | 雌 | 温带粳稻×籼稻 | [ |
hsa2 | 8 | 雌 | 籼稻×粳稻 | [ | Se | 12 | 雌 | 温带粳稻×籼稻 | [ |
hsa3 | 9 | 雌 | 籼稻×粳稻 | [ | Sf | — | 雌 | 温带粳稻×籼稻 | [ |
f1 | 1 | 雄 | 籼稻×粳稻 | [ | qS12 | 12 | 雌 | 籼稻×粳稻 | [ |
f3 | 3 | 雄 | 籼稻×粳稻 | [ | qPS-1 | 1 | 雌 | 籼稻×粳稻 | [ |
f8 | 8 | 雄 | 籼稻×粳稻 | [ | pss1 | 8 | 雄 | 籼稻×粳稻 | [ |
qSS-2 | 2 | — | 籼稻/粳稻×粳稻 | [ | DPL1 | 1 | 雌 | 温带粳稻× aus | [ |
qSS-8a | 8 | 雄 | 籼稻/粳稻×粳稻 | [ | DPL2 | 6 | 雌 | 温带粳稻× aus | [ |
qSS-8b | 8 | 雄 | 籼稻/粳稻×粳稻 | [ | f5 | 5 | 雌 | 温带粳稻×籼稻 | [ |
Ef1 | 1 | 雌 | 籼稻×籼稻 | [ | Pf12 | 12 | 雄 | 籼稻×粳稻 | [ |
ESA1 | 1 | 雌 | 籼稻×普通野生稻 | [ | Pf3 | 3 | 雄 | 籼稻×籼稻 | [ |
qSIG3.1 | 3 | 雌 | 籼稻×粳稻 | [ | Pf5.2 | 5 | 雄 | 籼稻×粳稻 | [ |
qSIG3.2 | 3 | 雌 | 籼稻×粳稻 | [ | Pf8 | 8 | 雄 | 籼稻×粳稻 | [ |
qSIG6.1 | 6 | 雌 | 籼稻×粳稻 | [ | Pf10 | 10 | 雄 | 籼稻×粳稻 | [ |
qSIG12.1 | 12 | 雌 | 籼稻×粳稻 | [ | Sf1.2 | 1 | 小穗 | 籼稻×粳稻 | [ |
S3 | 9 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ | Sf3 | 3 | 小穗 | 籼稻×籼稻 | [ |
S12 | 12 | 雄 | 亚洲栽培稻×非洲栽培稻 | [ | Sf7 | 7 | 小穗 | 籼稻×粳稻 | [ |
S13 | 1 | 雄 | 亚洲栽培稻×长雄野生稻 | [ | Sf9 | 9 | 小穗 | 籼稻×粳稻 | [ |
[1] | 梁楚炎, 巫明明, 黄凤明, 等. 基因编辑及全基因组选择技术在水稻育种中的应用展望[J]. 中国水稻科学, 2024, 38(1): 1-12. |
[2] | JONES J W. Hybrid vigor in rice[J]. Agronomy Journal, 1926, 18(5): 423-428. |
[3] | 杨守仁. 籼粳稻杂交育种的进展及前景[J]. 中国农业科学, 1986, 19(5): 15-18. |
[4] | 王振山, 朱立煌, 刘志勇, 等. 野生稻天然群体限制性酶切片段长度(RFLP)多态性研究[J]. 农业生物技术学报, 1996, 4(2): 7. |
[5] | 杨振玉, 陈秋柏, 陈荣芳, 等. 水稻粳型恢复系 C57的选育[J]. 作物学报, 1981, 7(3): 153-156. |
[6] | 袁隆平. 杂交水稻的育种战略设想[J]. 杂交水稻, 1987, 2(1): 1-4. |
[7] | 李振宇, 吴建利. “粳不/籼” 配组方式在水稻亚种间杂种优势利用中的重要性[J]. 杂交水稻, 1993, 8(1): 6-8. |
[8] | 王象坤, 孙传清, 才宏伟, 等. 中国稻作起源与演化[J]. 科学通报, 1998, 43(22): 2354-2363. |
[9] | 魏兴华. 中国栽培稻地方种资源等位基因地理分布及遗传多样性保护研究[D]. 杭州: 浙江大学, 2002. |
[10] | WALKER K J, STEVENS P A, STEVENS D P, et al. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK[J]. Biological Conservation, 2004, 119(1): 1-18. |
[11] | TRAORÉ O, PINEL-GALZI A, SORHO F, et al. A reassessment of the epidemiology of Rice yellow mottle virus following recent advances in field and molecular studies[J]. Virus Research, 2009, 141(2): 258-267. |
[12] | WENG Y Q, JOHNSON S, STAUB J E, et al. An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L.[J]. HortScience, 2010, 45(6): 882-886. |
[13] | MORLNAGA T, KURIYAMA H. Intermediate type of rice in the subcontinent of India and Java[J]. Japanese Journal of Breeding, 1958, 7(4): 253-259. |
[14] | GLASZMANN J C. Isozymes and classification of Asian rice varieties[J]. Theoretical and Applied Genetics, 1987, 74(1): 21-30. |
[15] | 张德慈. 水稻的起源、进化与演变[J]. 世界科学译刊, 1980(5): 1-3. |
[16] | AGRAMA H A, EIZENGA G C, YAN W. Association mapping of yield and its components in rice cultivars[J]. Molecular Breeding, 2007, 19(4): 341-356. |
[17] | WANG M, CHEN J H, ZHOU F, et al. The ties of brotherhood between japonica and indica rice for regional adaptation[J]. Science China Life Sciences, 2022, 65(7): 1369-1379. |
[18] | PANG H B, CHEN Q, LI Y Y, et al. Comparative analysis of the transcriptomes of two rice subspecies during domestication[J]. Scientific Reports, 2021, 11(1): 3660. |
[19] | 张建勇, 袁佐清, 李仕贵. 微卫星标记分析籼粳亚种间的遗传多样性[J]. 山东理工大学学报(自然科学版), 2005, 19(2): 22-27. |
[20] | 陈雨, 潘大建, 曲延英, 等. 水稻籼粳分化研究进展[J]. 广东农业科学, 2007, 34(12): 3-7. |
[21] | 徐海, 陶士博, 唐亮, 等. 栽培稻的籼粳分化与杂交育种研究进展[J]. 沈阳农业大学学报, 2012, 43(6): 704-710. |
[22] | 徐正进, 陈温福, 张龙步, 等. 水稻穗颈维管束性状的类型间差异及其遗传的研究[J]. 作物学报, 1996, 22(2): 167-172. |
[23] | 姜健, 李金泉, 徐正进, 等. 籼粳稻主要形态解剖特性的类型间差异及与经济性状的关系[J]. 吉林农业科学, 2001, 26(6): 11-15, 19. |
[24] | 曹树青, 翟虎渠, 杨图南, 等. 水稻种质资源光合速率及光合功能期的研究[J]. 中国水稻科学, 2001, 15(1): 29-34. |
[25] | 陈温福, 徐正进, 张龙步, 等. 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究[J]. 中国水稻科学, 1990, 4(4): 163-168. |
[26] | 季本华, 李传国, 葛明治, 等. 籼粳稻光合作用的光抑制特性及在正反交F1杂种中的表现[J]. 植物生理学报, 1994, 20(1): 8-16. |
[27] | 许旭明. 水稻籼粳亚种间杂交衍生系遗传基础的研究[D]. 福州: 福建农林大学, 2009. |
[28] | 王鹤潼. 不同生态条件下籼粳交后代亚种分化研究及环境响应[D]. 沈阳: 沈阳农业大学, 2013. |
[29] | BAYEV A, GEORGIEV O I, HADJIOLOV A A, et al. The structure of the yeast ribosomal RNA genes. 3. Precise mapping of the 18S and 25S rRNA genes and structure of the adjacent regions[J]. Nucleic Acids Research, 1981, 9(4): 789-799. |
[30] | ROGERS S O, BENDICH A J. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer[J]. Plant Molecular Biology, 1987, 9(5): 509-520. |
[31] | GARBER R C, TURGEON B G, SELKER E U, et al. Organization of ribosomal RNA genes in the fungus Cochliobolus heterostrophus[J]. Current Genetics, 1988, 14(6): 573-582. |
[32] | OONO K, SUGIURA M. Heterogeneity of the ribosomal RNA gene clusters in rice[J]. Chromosoma, 1980, 76(1): 85-89. |
[33] | CORDESSE F, SECOND G, DELSENY M. Ribosomal gene spacer length variability in cultivated and wild rice species[J]. Theoretical and Applied Genetics, 1990, 79(1): 81-88. |
[34] | YI Q M, LIU G P. Spacer length variation in rice 5S rRNA genes revealed by polymerase chain reaction[J]. Wuhan University Journal of Natural Sciences, 1997, 2(1): 124-126. |
[35] | NASU S, SUZUKI J, OHTA R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers[J]. DNA Research, 2002, 9(5): 163-171. |
[36] | ISHII T, TSUNEWAKI K. Chloroplast genome differentiation in Asian cultivated rice[J]. Genome, 1991, 34(5): 818-826. |
[37] | KANNO A, WATANABE N, NAKAMURA I, et al. Variations in chloroplast DNA from rice (Oryza sativa): differences between deletions mediated by short direct-repeat sequences within a single species[J]. Theoretical and Applied Genetics, 1993, 86(5): 579-584. |
[38] | CHENG L, NAM J, CHU S H, et al. Signatures of differential selection in chloroplast genome between japonica and indica[J]. Rice, 2019, 12(1): 65. |
[39] | TIAN X J, ZHENG J, HU S N, et al. The rice mitochondrial genomes and their variations[J]. Plant Physiology, 2006, 140(2): 401-410. |
[40] | 闵超. 籼稻特异表达蛋白(ISP)的分离及其功能分析[D]. 镇江: 江苏大学, 2016. |
[41] | 孙新立, 才宏伟, 王象坤. 东亚、南亚籼稻同工酶基因的异同分析[J]. 中国农业科学, 1997, 30(5): 21-25. |
[42] | 段中岗, 梁承邺. 改良聚丙烯酰胺凝胶电泳法测定籼粳分化的同工酶带[J]. 兰州大学学报, 2005, 41(4): 30-33. |
[43] | 严建兵, 王毅, 汤华, 等. 基于株高性状的玉米EST序列与水稻基因组的比较研究[J]. 作物学报, 2004, 30(7): 657-667. |
[44] | TAN Y J, SUN L, SONG Q N, et al. Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain[J]. Theoretical and Applied Genetics, 2020, 133(2): 529-545. |
[45] | 周全. 籼、粳稻镉积累差异及机理的研究[D]. 北京: 中国农业科学院, 2016. |
[46] | BISWASH M R, LU H L, DONG G, et al. Effect of root surface charge on the absorption and accumulation of Cu(Ⅱ) by different japonica and indica rice varieties under acidic conditions[J]. Ecotoxicology and Environmental Safety, 2021, 223: 112547. |
[47] | SUN L M, CHE J, MA J F, et al. Expression level of transcription factor ART1 is responsible for differential aluminum tolerance in indica rice[J]. Plants, 2021, 10(4): 634. |
[48] | ZHANG J Y, LIU Y X, ZHANG N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684. |
[49] | JOHNS M A, MAO L. Differentiation of the two rice subspecies indica and japonica: a gene ontology perspective[J]. Functional & Integrative Genomics, 2007, 7(2): 135-151. |
[50] | ZHANG W, DASMAHAPATRA K K, MALLET J, et al. Genome-wide introgression among distantly related Heliconius butterfly species[J]. Genome Biology, 2016, 17: 25. |
[51] | GONG H, HAN B. Genetic introgression between different groups reveals the differential process of Asian cultivated rice[J]. Scientific Reports, 2022, 12(1): 17662. |
[52] | ANDO T, YAMAMOTO T, SHIMIZU T, et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice[J]. Theoretical and Applied Genetics, 2008, 116(6): 881-890. |
[53] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[54] | CHEN J J, DING J H, OUYANG Y D, et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11436-11441. |
[55] | YANG J Y, ZHAO X B, CHENG K, et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice[J]. Science, 2012, 337(6100): 1336-1340. |
[56] | OUYANG Y D, LI G W, MI J M, et al. Origination and establishment of a trigenic reproductive isolation system in rice[J]. Molecular Plant, 2016, 9(11): 1542-1545. |
[57] | MI J M, LI G W, XU C H, et al. Artificial selection in domestication and breeding prevents speciation in rice[J]. Molecular Plant, 2020, 13(4): 650-657. |
[58] | 郭洁, 刘少隆, 周新桥, 等. 水稻籼粳杂种不育性的遗传机理及杂种优势利用[J]. 广东农业科学, 2022, 49(9): 53-65. |
[59] | BAACK E, MELO M C, RIESEBERG L H, et al. The origins of reproductive isolation in plants[J]. New Phytologist, 2015, 207(4): 968-984. |
[60] | OUYANG Y D, ZHANG Q F. The molecular and evolutionary basis of reproductive isolation in plants[J]. Journal of Genetics and Genomics, 2018, 45(11): 613-620. |
[61] | ZHANG Y, WANG J, PU Q H, et al. Understanding the nature of hybrid sterility and divergence of Asian cultivated rice[J]. Frontiers in Plant Science, 2022, 13: 908342. |
[62] | SHEN Y M, ZHAO Z G, MA H Y, et al. Fine mapping of S37, a locus responsible for pollen and embryo sac sterility in hybrids between Oryza sativa L. and O. glaberrima Steud[J]. Plant Cell Reports, 2015, 34(11): 1885-1897. |
[63] | 陈海元. 水稻种间杂种不育位点S40的精细定位及其败育机理的研究[D]. 南京: 南京农业大学, 2017. |
[64] | SANO Y, CHU Y, OKA H I. Genetic studies of speciation in cultivated rice. 1. Genic analysis for the F1 sterility between O. sativa L. and O. glaberrima Steud[J]. The Japanese Journal of Genetics, 1979, 54(2): 121-132. |
[65] | SANO R, MORISHIMA H. indica-japonica differentiation of rice cultivars viewed from variations in key characters and isozymes, with special reference to landraces from the Himalayan hilly areas[J]. Theoretical and Applied Genetics, 1992, 84(3/4): 266-274. |
[66] | LI Z, PINSON S R, PATERSON A H, et al. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population[J]. Genetics, 1997, 145(4): 1139-1148. |
[67] | IKEHASHI H, ARAKI H. Genetics of F1 sterility in remote crosses of rice[M]// BANTA S J. Rice geneticsⅠ. World Scientific Publishing company, 2008: 119-130. |
[68] | YANAGIHARA S, KATO H, IKEHASHI H. A new locus for multiple alleles causing hybrid sterility between an aus variety and javanica varieties in rice (Oryza sativa L.)[J]. Japanese Journal of Breeding, 1992, 42(4): 793-801. |
[69] | WANG J M, YANAGIHARA S, KATO H, et al. Multiple alleles at a new locus causing hybrid sterility between a Korean indica variety and a Javanica variety in rice (Oryza sativa L.)[J]. Japanese Journal of Breeding, 1993, 43(4): 507-516. |
[70] | WAN J, YAMAGUCHI Y, KATO H, et al. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 1996, 92(2): 183-190. |
[71] | SANO Y, SANO R, EIGUCHI M, et al. Gamete eliminator adjacent to the wx locus as recealed by pollen analysis in rice[J]. Journal of Heredity, 1994, 85(4): 310-312. |
[72] | WAN J M, IKEHASHI H. Identification of a new locus S-16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Tai-hu Lake Region and Yunnan Province, China[J]. Japanese Journal of Breeding, 1995, 45(4): 461-470. |
[73] | LIN S Y, IKEHASHI H, YANAGIHARA S, et al. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L)[J]. Theoretical and Applied Genetics, 1992, 84(7): 812-818. |
[74] | FELDMAN M. Fertility of interspecific f1 hybrids and hybrid derivatives involving tetraploid species of Aegilops section pleionathera[J]. Evolution, 1965, 19(4): 556-562. |
[75] | ZHU S, WANG C, ZHENG T, et al. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice[J]. Plant Breeding, 2005, 124(5): 440-445. |
[76] | ZHU S S, JIANG L, WANG C M, et al. The origin of weedy rice ludao in China deduced by genome wide analysis of its hybrid sterility genes[J]. Breeding Science, 2005, 55(4): 409-414. |
[77] | ZHAO Z G, WANG C M, JIANG L, et al. Identification of a new hybrid sterility gene in rice (bi Oryza sativa L.)[J]. Euphytica, 2006, 151(3): 331-337. |
[78] | LI D T, CHEN L M, JIANG L, et al. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2007, 114(3): 515-524. |
[79] | CHEN M J, ZHAO Z G, JIANG L, et al. A new gene controlling hybrid sterility in rice (Oryza sativa L.)[J]. Euphytica, 2012, 184(1): 15-22. |
[80] | 朱旭东, 王建林, 钱前, 等. 籼粳不育新位点的发现及其遗传分析[J]. 遗传学报, 1998, 25(3): 21-25. |
[81] | KUBO T, YOSHIMURA A. Epistasis underlying female sterility detected in hybrid breakdown in a japonica-indica cross of rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2005, 110(2): 346-355. |
[82] | WANG J, LIU K D, XU C G, et al. The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis[J]. Theoretical and Applied Genetics, 1998, 97(3): 407-412. |
[83] | WANG C M, ZHU C S, ZHAI H Q, et al. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.)[J]. Genetical Research, 2005, 86(2): 97-106. |
[84] | LI G W, LI X T, WANG Y, et al. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice[J]. The Plant Journal, 2017, 92(3): 349-362. |
[85] | HOU J J, CAO C H, RUAN Y N, et al. ESA1 is involved in embryo sac abortion in interspecific hybrid progeny of rice[J]. Plant Physiology, 2019, 180(1): 356-366. |
[86] | RAO J L, WANG X, CAI Z Q, et al. Genetic analysis of S5-interacting genes regulating hybrid sterility in rice[J]. Rice, 2021, 14(1): 11. |
[87] | SANO Y. A new gene controlling sterility in F1 hybrids of two cultivated rice species: Its association with photoperiod sensitivity[J]. Journal of Heredity, 1983, 74(6): 435-439. |
[88] | WU G, GU Y, LI S D, et al. A genome-wide analysis of Arabidopsis rop-interactive CRIB motif-containing proteins that act as rop GTPase targets[J]. The Plant Cell, 2001, 13(12): 2841-2856. |
[89] | OKA H I. Genic analysis for the sterility of hybrids between distantly related varieties of cultivated rice[J]. Journal of Genetics, 1957, 55(3): 397-409. |
[90] | DEVANAND P S, RANGASWAMY M, IKEHASHI H. Identification of hybrid sterility gene loci in two cytoplasmic male sterile lines in rice[J]. Crop Science, 2000, 40(3): 640-646. |
[91] | YABUNO T. Genetic studies on the interspecific cytoplasm substitution lines of japonica varieties of Oryza sativa L. and O. glaberrima Steud[J]. Euphytica, 1977, 26(2): 451-463. |
[92] | LIU L, GUO W, ZHU X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L.[J]. Theoretical and Applied Genetics, 2003, 106(3): 461-469. |
[93] | WILLIAMS C E, YANAGIHARA S, MCCOUCH S R, et al. Predicting success of indica/Japonica crosses in rice, based on a PCR marker for the S-5n allele at a hybrid-sterility locus[J]. Crop Science, 1997, 37(6): 1910-1912. |
[94] | MARTIN S L, LAFLAMME M L, JAMES T, et al. A sexual hybrid and autopolyploids detected in seed from crosses between Neslia paniculata and Camelina sativa (Brassicaceae)[J]. Botany, 2020, 98(7): 393-399. |
[95] | LI J, ZHOU J W, XU P, et al. Mapping five novel interspecific hybrid sterility loci between Oryza sativa and Oryza meridionalis[J]. Breeding Science, 2018, 68(5): 516-523. |
[96] | FENG Y M, TANG J T, LIU R Y, et al. Characterization and fine-mapping of a new Asian rice selfish genetic locus S58 in Asian-African rice hybrids[J]. Theoretical and Applied Genetics, 2023, 136(4): 87. |
[97] | LONG Y M, ZHAO L F, NIU B X, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48): 18871-18876. |
[98] | LI W T, ZENG R Z, ZHANG Z M, et al. Fine mapping of locus S-b for F1 pollen sterility in rice (Oryza sativa L.)[J]. Chinese Science Bulletin, 2006, 51(6): 675-680. |
[99] | SHEN R X, WANG L, LIU X P, et al. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice[J]. Nature Communications, 2017, 8(1): 1310. |
[100] | 高勇, 申宗坦, 杨振玉. 粳稻品种4502与广亲和品种间杂种F1不育性的遗传分析[J]. 作物学报, 1998, 24(5): 590-594. |
[101] | 张桂权, 卢永根, 张华, 等. 栽培稻(Oryza sativa)杂种不育性的遗传研究: Ⅳ.F1花粉不育性的基因型[J]. 遗传学报, 1994, 21(1): 34-41. |
[102] | ZHANG H, ZHANG C Q, SUN Z Z, et al. A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid[J]. Theoretical and Applied Genetics, 2011, 123(7): 1247-1256. |
[103] | WANG Y, ZHONG Z Z, ZHAO Z G, et al. Fine mapping of a gene causing hybrid pollen sterility between Yunnan weedy rice and cultivated rice (Oryza sativa L.) and phylogenetic analysis of Yunnan weedy rice[J]. Planta, 2010, 231(3): 559-570. |
[104] | YU W W, WANG C M, IKEHASHI H, et al. Mapping of a novel gene for semi-sterility in rice (Oryza sativa L.)[J]. Breeding Science, 2005, 55(1): 15-20. |
[105] | MIZUTA Y, HARUSHIMA Y, KURATA N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20417-20422. |
[106] | WANG G W, HE Y Q, XU C G, et al. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2006, 112(2): 382-387. |
[107] | SONG X, QIU S Q, XU C G, et al. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice[J]. Theoretical and Applied Genetics, 2005, 110(2): 205-211. |
[108] | OUYANG Y D, ZHANG Q F. Understanding reproductive isolation based on the rice model[J]. Annual Review of Plant Biology, 2013, 64: 111-135. |
[109] | 谢勇尧, 汤金涛, 杨博文, 等. 水稻育性调控的分子遗传研究进展[J]. 遗传, 2019, 41(8): 703-715. |
[110] | ABDELKHALIK A F, SHISHIDO R, NOMURA K, et al. QTL-based analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza saliva L.)[J]. Breeding Science, 2005, 55(1): 41-48. |
[111] | HUANG X H, YANG S H, GONG J Y, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629-633. |
[112] | XIE J Y, WANG W P, YANG T, et al. Large-scale genomic and transcriptomic profiles of rice hybrids reveal a core mechanism underlying heterosis[J]. Genome Biology, 2022, 23(1): 264. |
[113] | WANG C S, TANG S C, ZHAN Q L, et al. Dissecting a heterotic gene through Graded Pool-Seq mapping informs a rice-improvement strategy[J]. Nature Communications, 2019, 10(1): 2982. |
[114] | 施勇烽, 刘鑫, 华宇峰, 等. 我国粳不籼恢亚种间杂交稻的研究进展与展望[J]. 中国稻米, 2022, 28(5): 49-56. |
[115] | GUO J, XU X M, LI W T, et al. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines[J]. Scientific Reports, 2016, 6: 26878. |
[1] | CHEN Min, SUN-LUO Mingsheng, SHEN Jiaming, YE Youxiang, ZHAO Guohua. Effects of different forms of nitrogen nutrition on the growth of rice seedlings under tetracycline stress [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1322-1327. |
[2] | XU Youxiang, ZHU Zhenling, WANG Yufei, JIANG Jianfeng, YANG Haijun, DONG Xiangwei, LI Chengyong, CHEN Jinpeng, XU Kan, YE Yihao, ZHANG Yan, WANG Honghang, SHAO Guosheng. Effects of rapeseed-rice-bean rotation on soil physicochemical properties and rice trace element content [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1315-1321. |
[3] | GAN Yingying, QIU Gaoyang, GUO Bin, FU Qinglin, ZHANG Junbo, LIU Junli, CHEN Xiaodong. Effects of different varieties and transplanting densities on salt tolerance, root system, and yield of rice in coastal saline-alkali land [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1308-1314. |
[4] | MO Junjie, WU Xiangyun, LIU Wentong, CHEN Churun, GAO Zhichao. Study on variability of separated generations in rice population breeding [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 805-812. |
[5] | FAN Dejia, CHEN Shiqiang, HE Zhentian, ZHANG Rong, WANG Ruqin, CHENG Menghao, WANG Jianhua. Character analysis of rice varieties approved through different test channels in Jiangsu Province [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 819-825. |
[6] | LI Kun, LIU Zhonglai, CAO Guojun, PAN Shiwen, YU Xuan, ZHANG Yiyue, WANG Zhiquan. Study on productivity of 4 conventional japonica rice varieties in northern Jiangxi Province [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 826-829. |
[7] | ZHANG Xinyue, YE Shenghai, DONG Junjie, FU Haowei, LI Youfa. Breeding of new indica-japonica hybrid rice combination Zhejingjiayou 710 with high yield and good quality [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 830-833. |
[8] | ZHANG Chengxiang, LI Bai, LU Jingen, GAO Rongcun. Breeding of a new high-quality and disease-resistant three-line hybrid japonica rice variety Jiayou 10 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 834-837. |
[9] | QI Yongbin, WANG Linyou, LYU Xiangchao, JIANG Genshui, ZHANG Haodi. Breeding, characteristics and cultivation techniques of a new high yield and long-grain indica and japonica hybrid rice variety Zheyou 77 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 838-842. |
[10] | WANG Wei, QI Yongbin, WANG Junmin, XIAO Changming, LI Kekuan, LIU Chaogang, LIU Qinglong. Breeding and application of round grain specialized two-line early indica rice restorer line Fu 269 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 843-847. |
[11] | QIAN Yanjie, LI Cheng, YAO Yanhong, HU Mingyong, WANG Wei, JIANG Yu, LUO Wei, XIAO Feifei, WANG Shaoxi. Selection experiment of high-yield regenerated rice varieties suitable for Changsha Region [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 848-853. |
[12] | TAO Ruofu, XIA Ruda. Effects of nitrogen fertilizer reduction combined with foliar silicon fertilizer on agronomic traits and yield of Huazheyou 261 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 854-857. |
[13] | LIU Guoqun, ZHU Chunquan, LIU Xiaoxia, LI Ronghui, YAN Wenting, SUN Xiuhua, SHANG Xiaolan, ZHU Lianfeng, TIAN Wenhao, ZHANG Junhua. Effects of different new fertilizer application on yield and quality of rice [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 858-862. |
[14] | CAI Daming, LU Xin, LI Penghao, WANG Weiping, ZHOU Zhiguo, HONG Chunlai. Effects of perishable waste organic fertilizer application on rice growth and soil physicochemical properties [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 566-571. |
[15] | SHENG Yanfei, ZHANG Wenhan, FU Liqing, HUANG Qiying, LU Zhongcheng, YE Nan, LU Jiujin. Effect of slow release fertilizer on double cropping rice yield and fertilizer utilization rate in central Zhejiang [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 572-575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||