Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (8): 2039-2046.DOI: 10.16178/j.issn.0528-9017.20240971
Previous Articles Next Articles
YING Hong1(), LUO Yan2,*(
), JIN Shuquan1, ZHOU Jinbo1, WANG Minghu3
Received:
2024-12-20
Online:
2025-08-11
Published:
2025-09-04
CLC Number:
YING Hong, LUO Yan, JIN Shuquan, ZHOU Jinbo, WANG Minghu. Structural and adsorption properties of different biochar derived from agricultural and forestry wastes[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2039-2046.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240971
生物 质炭 | 产率/ % | 灰分/ % | pH值 | 元素含量/% | 原子比 | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | O | H/C | O/C | (O+N)/C | ||||
RSBC | 35.18 | 24.68 | 9.94±0.01 | 1.20±0.01 | 54.51±0.07 | 3.29±0.03 | 8.69±0.14 | 0.72 | 0.12 | 0.14 |
MSBC | 36.42 | 39.04 | 9.00±0.01 | 0.56±0.07 | 42.04±0.08 | 1.62±0.05 | 8.71±0.17 | 0.46±0.01 | 0.16 | 0.17 |
WSBC | 40.35 | 2.67 | 10.03±0.02 | 0.40±0.02 | 81.07±0.24 | 2.39±0.04 | 10.40±0.26 | 0.35±0.01 | 0.10 | 0.10 |
SDBC | 37.08 | 1.95 | 8.99±0.06 | 0.47±0.02 | 77.20±0.17 | 3.07±0.03 | 11.48±0.10 | 0.48±0.01 | 0.11 | 0.12 |
Table 1 Elemental composition of biochar derived from different agricultural and forestry wastes
生物 质炭 | 产率/ % | 灰分/ % | pH值 | 元素含量/% | 原子比 | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | O | H/C | O/C | (O+N)/C | ||||
RSBC | 35.18 | 24.68 | 9.94±0.01 | 1.20±0.01 | 54.51±0.07 | 3.29±0.03 | 8.69±0.14 | 0.72 | 0.12 | 0.14 |
MSBC | 36.42 | 39.04 | 9.00±0.01 | 0.56±0.07 | 42.04±0.08 | 1.62±0.05 | 8.71±0.17 | 0.46±0.01 | 0.16 | 0.17 |
WSBC | 40.35 | 2.67 | 10.03±0.02 | 0.40±0.02 | 81.07±0.24 | 2.39±0.04 | 10.40±0.26 | 0.35±0.01 | 0.10 | 0.10 |
SDBC | 37.08 | 1.95 | 8.99±0.06 | 0.47±0.02 | 77.20±0.17 | 3.07±0.03 | 11.48±0.10 | 0.48±0.01 | 0.11 | 0.12 |
生物质炭 | 比表面积/ (m2·g-1) | 微孔比表面积/ (m2·g-1) | 外比表面积/ (m2·g-1) | 孔容/ (cm3·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
RSBC | 50.19 | 25.96 | 24.23 | 0.072 | 5.76 |
MSBC | 90.15 | 50.20 | 39.95 | 0.088 | 3.91 |
WSBC | 372.04 | 311.36 | 60.68 | 0.183 | 1.97 |
SDBC | 374.85 | 326.21 | 48.64 | 0.174 | 1.86 |
Table 2 Specific surface area and aperture analysis of biochar derived from different agricultural and forestry wastes
生物质炭 | 比表面积/ (m2·g-1) | 微孔比表面积/ (m2·g-1) | 外比表面积/ (m2·g-1) | 孔容/ (cm3·g-1) | 平均孔径/ nm |
---|---|---|---|---|---|
RSBC | 50.19 | 25.96 | 24.23 | 0.072 | 5.76 |
MSBC | 90.15 | 50.20 | 39.95 | 0.088 | 3.91 |
WSBC | 372.04 | 311.36 | 60.68 | 0.183 | 1.97 |
SDBC | 374.85 | 326.21 | 48.64 | 0.174 | 1.86 |
生物质炭 | 一级动力学方程 | 二级动力学方程 | ||||
---|---|---|---|---|---|---|
qe/(mg·g-1) | K1/(g·mg-1·h-1) | R2 | qe/(mg·g-1) | K2/(g·mg-1·h-1) | R2 | |
RSBC | 21.128 | 2.370 | 0.992 | 21.734 | 0.323 | 0.998 |
MSBC | 15.451 | 2.442 | 0.992 | 15.874 | 0.470 | 0.998 |
WSBC | 11.833 | 1.310 | 0.965 | 11.160 | — | 0.899 |
SDBC | 8.568 | 0.854 | 0.963 | 7.676 | — | 0.805 |
Table 3 The fitted results of Cu2+ adsorption kinetics on biochar derived from different agricultural and forestry wastes
生物质炭 | 一级动力学方程 | 二级动力学方程 | ||||
---|---|---|---|---|---|---|
qe/(mg·g-1) | K1/(g·mg-1·h-1) | R2 | qe/(mg·g-1) | K2/(g·mg-1·h-1) | R2 | |
RSBC | 21.128 | 2.370 | 0.992 | 21.734 | 0.323 | 0.998 |
MSBC | 15.451 | 2.442 | 0.992 | 15.874 | 0.470 | 0.998 |
WSBC | 11.833 | 1.310 | 0.965 | 11.160 | — | 0.899 |
SDBC | 8.568 | 0.854 | 0.963 | 7.676 | — | 0.805 |
生物质炭 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/(mg·g-1)· (mg·L-1)-b | b | R2 | |
RSBC | 25.844 1 | 2.264 6 | 0.947 6 | 14.441 9 | 0.137 5 | 0.990 8 |
MSBC | 19.926 3 | 3.989 3 | 0.954 9 | 11.528 9 | 0.102 9 | 0.998 5 |
WSBC | 15.812 3 | 0.371 4 | 0.960 5 | 7.966 4 | 0.143 6 | 0.998 4 |
SDBC | 13.146 8 | 0.118 5 | 0.941 5 | 4.691 6 | 0.200 7 | 0.991 8 |
Table 4 The fitted results of Cu2+ isothermal adsorption on biochar derived from different agricultural and forestry wastes
生物质炭 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm/(mg·g-1) | KL/(L·mg-1) | R2 | KF/(mg·g-1)· (mg·L-1)-b | b | R2 | |
RSBC | 25.844 1 | 2.264 6 | 0.947 6 | 14.441 9 | 0.137 5 | 0.990 8 |
MSBC | 19.926 3 | 3.989 3 | 0.954 9 | 11.528 9 | 0.102 9 | 0.998 5 |
WSBC | 15.812 3 | 0.371 4 | 0.960 5 | 7.966 4 | 0.143 6 | 0.998 4 |
SDBC | 13.146 8 | 0.118 5 | 0.941 5 | 4.691 6 | 0.200 7 | 0.991 8 |
[1] | 孙达, 汪华, 孔燕, 等. 水稻秸秆生物炭和猪粪生物炭对镉的吸附性能[J]. 浙江农业科学, 2020, 61(2): 308-313. |
[2] | 王红霞, 张治伟, 徐品, 等. 农作物废弃物生物炭制备及改性的研究进展[J]. 广东化工, 2024, 51(7): 95-97. |
[3] | CHAN Y C, SIMPSON R W, MCTAINSH G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment, 1999, 33(19): 3237-3250. |
[4] | LI Y, XING B, DING Y, et al. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2020, 312: 123614. |
[5] | KAMALI M, SWEYGERS N, AL-SALEM S, et al. Biochar for soil applications-sustainability aspects, challenges and future prospects[J]. Chemical Engineering Journal, 2022, 428: 131189. |
[6] | CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science&Technology, 2004, 38(17): 4649-4655. |
[7] | 王梧镇, 李若晨, 谢奇玕, 等. 不同改良剂对Cd污染土壤及水稻Cd吸收转运的影响[J]. 浙江农业科学, 2023, 64(6): 1446-1450. |
[8] | ACEMIOĞ LU B. Removal of a reactive dye using NaOH-activated biochar prepared from peanut shell by pyrolysis process[J]. International Journal of Coal Preparation and Utilization, 2022, 42(3): 671-693. |
[9] | 罗庆, 寇力月, 魏忠平, 等. 不同原料来源及热解温度下林业废弃物生物炭理化性质差异研究[J]. 沈阳农业大学学报, 2024, 55(3): 285-297. |
[10] | 吴诗雪, 王欣, 陈灿, 等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析[J]. 环境科学学报, 2015, 35(12): 4021-4032. |
[11] | 徐雪斌, 丁竹红, 胡忻, 等. 花生壳基和木屑基生物炭对离子型染料和Pb(Ⅱ)的吸附性能研究[J]. 环境污染与防治, 2017, 39(9): 929-935. |
[12] | 魏样, 李日升, 卢楠, 等. 三种秸秆生物炭对污染土壤中汞、砷钝化的研究[J]. 地球环境学报, 2025, 16(1):99-106. |
[13] | 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性[J]. 环境化学, 2020, 39(4): 1116-1128. |
[14] | 李丹阳. 几种生物炭及改性材料对水中镉离子的吸附性能及机理研究[D]. 长沙: 湖南农业大学, 2019. |
[15] | BERGER C M. Biochar and activated carbon filters for greywater treatment: comparison of organic matter and nutrients removal[D]. Uppsala: Swedish University of Agricultural Sciences, 2012. |
[16] | 兰天, 张辉, 刘源, 等. 玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J]. 江苏农业学报, 2016, 32(2): 368-375. |
[17] | Liu B, Chen T, Wang B, et al. Enhanced removal of Cd2+ from water by AHP-pretreated biochar: adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2022, 438: 129467. |
[18] | ZHAO C, GE L C, WANG R K, et al. Effects of cellulose addition on the physicochemical properties, pore structure and iodine adsorption of lignin-based biochar[J]. Fuel, 2023, 352: 129061. |
[19] | 张兴梅, 王鑫宇, 李思锦. 落叶松不同器官化学组分及其生物炭理化性质研究[J]. 林业与生态科学, 2023, 38(4): 391-398. |
[20] | MENG Q, WU S, SHEN C. Polyethylenimine-grafted-corncobas a muljpgunctional biomaterial for removing heavy metal ions and killing bacteria from water[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17476-17482. |
[21] | LI S K, WEN Y J, WANG Y F, et al. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil[J]. Journal of hazardous materials, 2023, 132740. |
[22] | 张晓凤, 马珮瑶, 邓志华, 等. 农林基质生物炭联合香根草对铜镉铅复合污染土壤的修复研究[J]. 西南林业大学学报(自然科学), 2024, 44(6): 1-9. |
[23] | DANISH M, AHMAD T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable & Sustainable Energy Reviews, 2018, 87: 1-21. |
[24] | COLE J E, ZANDVAKILI R O, XING B S, et al. Dataset on the effect of hardwood biochar on soil gravimetric moisture content and nitrate dynamics at different soil depths with FTIR analysis of fresh and aged biochar[J]. Data in Brief, 2019, 25. |
[25] | PASUMARTHI R, SAWARGAONKAR G, KALE S, et al. Innovative bio-pyrolytic method for efficient biochar production from maize and pigeonpea stalks and their characterization[J]. Journal of Cleaner Production, 2024, 448. |
[26] | LIU J, YANG X Y, LIU H T, et al. Mixed biochar derived by the co-pyrolysis of shrimp shell with corn straw: co-pyrolysis characteristics and its adsorption capability[J]. Chemosphere, 2021, 131116. |
[27] | 吴晓梅, 叶美锋, 吴飞龙, 等. 农林废弃物生物炭的制备及其吸附性能[J]. 生物质化学工程, 2023, 57(4): 27-33. |
[28] | 韩鲁佳, 李彦霏, 刘贤, 等. 生物炭吸附水体中重金属机理与工艺研究进展[J]. 农业机械学报, 2017(11): 6-16. |
[29] | MOHAN D, RAJPUT S, SINGH V K, et al. Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent[J]. Journal of Hazardous Materials, 2011, 188(1-3): 319-333. |
[1] | LI Hui, LIN Jitong, SHAO Qi, LOU Yanhong, WANG Hui, YANG Quangang, PAN Hong, ZHUGE Yuping. Progress of effect of various fertilization patterns on soil phosphatase and its functional genes [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2032-2038. |
[2] | SHI Haojie, LI Shuai, MA Jiawei, YE Zhengqian, FU Liqing, WANG Xudong. Effects of biochar application on rice growth and cadmium content under water deficiency conditions [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1570-1577. |
[3] | JIANG Hongying, MA Ling, ZHANG Zhenwu, WU Huixin, XING Chenghua. Effects of biochar-immobilized Aspergillus niger on the degradation of deltamethrin in tea garden soil [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1603-1606. |
[4] | GU Xueping, ZHANG Yiqun, LI Yaping, SUN Jian, DUAN Xiaojing, LIU Yingying, TAO Zhengming, JIANG Wu, CHEN Jiadong. Study of the effect of biochar on alleviating the continuous cropping obstacle of Curcuma wenyujin Y.H. Chen & C. Ling [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1616-1620. |
[5] | ZHANG Fujian, CHEN Lei, HUI Yanhua, YAO Wenwu, XU Min, LU Yan, SHENG Haian, GU Jingyu, GONG Kai, JIANG Huiping. Effect of compound fertilizer combined with biochar and humic acid on the agronomic traits of Acorus calamus [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(5): 1195-1200. |
[6] | LIU Qin. Effects of garden waste compost and biochar on the physicochemical properties of coastal saline soils [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(5): 1257-1262. |
[7] | LIU Shuxin, WU Dongtao, LI Hanmei, DING Fenghua. Study on the alleviating effect of different application methods of biochar on continuous cropping obstacles in broad bean [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 935-939. |
[8] | MA Liang, JIN Xinmei, ZHANG Weixing, FANG Yunfeng. Effects of biochar and organic fertilizer on soil properties and rice growth [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 580-584. |
[9] | YAN Haofeng, FANG Linguan, LOU Shulin, HUANG Haitao. Application of constant temperature far-infrared aroma extraction technology in improving flavor quality of tea resources in summer and autumn [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 463-466. |
[10] | JIANG Shenyue, XUE Zhaokun, JIANG Huaqin, MENG Qingjiu, SHAO Sainan, DIAO Zhihan, YU Keru, YE Zhengqian, JIANG Yugen. Discussion on the rapid fertilization technology for the restoration of non-grain cultivated land [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(1): 218-223. |
[11] | LEI Chunsong, ZHANG Su'e, ZOU Wenhua, ZHONG Lijun, YE Zhengqian. Effects of tea branch biochar on soil fertility and cadmium absorption and transport in rice [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1860-1866. |
[12] | HAN Xiaojun, QIAO Zhigang. Effects of biochar on uptake and accumulation of trace elements in rice [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1551-1554. |
[13] | ZHU Zhenling, CHEN De, YE Xuezhu. Current status of standardization development of biochar from straw cabonization and field application [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(7): 1709-1713. |
[14] | SUN Yuxiao, TIAN Jianwei, YANG Haizhou, LIU Yan, NIE Bin, ZHANG Ningxin, WANG Gang, YIN Zhongchun, PENG Wuxing. Effects of partial replacement of chemical nitrogen with organic nitrogen on the yield, quality, and chemical composition of flue-cured tobacco [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1340-1345. |
[15] | LI Gensheng, LI Zenan, WANG Meixian, LU Haiqin. Effects of biochar on soil improvement and yield and quality of Chinese cabbage in greenhouses [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1139-1142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||