
ZHEJIANG NONGYE KEXUE ›› 2019, Vol. 60 ›› Issue (7): 1097-1100.DOI: 10.16178/j.issn.0528-9017.20190709
Previous Articles Next Articles
Received:2019-05-07
Online:2019-07-11
Published:2019-07-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20190709
| [1] 田小海, 罗海伟, 周恒多, 等. 中国水稻热害研究历史、进展与展望[J]. 中国农学通报, 2009, 25(22): 166-168. [2] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J.Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616-620. [3] ZHAO C, LIU B, PIAO S L, et al.Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences, 2017, 114(35): 9326-9331. [4] DAS S, KRISHNAN P, NAYAK M, et al.High temperature stress effects on pollens of rice ( [5] 李万成, 朱启升, 王云生, 等. 高温胁迫条件下水稻生理生化指标与产量性状的相关性研究[J]. 中国农学通报, 2013, 29(9): 5-10. [6] AGHAMOLKI M T K, YUSOP M K, OAD F C, et al. Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages[J]. Journal of Food Agriculture & Environment, 2014, 12: 741-746. [7] PENG S, HUANG J, SHEEHY J E, et al.Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences, 2004, 101(27): 9971-9975. [8] 李仁忠, 刘海英, 李建业, 等. 浙江省早稻高温热害发生规律及防御措施[J]. 浙江气象, 2011, 32(1): 23-26. [9] 秦叶波, 张慧. 水稻高温热害发生规律及防御措施[J]. 浙江农业科学, 2015, 56(9): 1362-1365. [10] 胡时开, 钱前. RNA解旋酶调控rRNA内稳态: 水稻耐热新机制、分子育种新资源[J]. 植物学报, 2016, 51(3): 283-286. [11] WAHID A, GELANI S, ASHRAF M, et al.Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199-223. [12] MITTLER R, FINKA A, GOLOUBINOFF P.How do plants feel the heat?[J]. Trends in Biochemical Sciences, 2012, 37(3): 118-125. [13] QU A L, DING Y F, JIANG Q, et al.Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207. [14] QUINT M, DELKER C, FRANKLIN K A, et al.Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2: 15190. [15] LI B J, GAO K, REN H M, et al.Molecular mechanisms governing plant responses to high temperatures[J]. Journal of Integrative Plant Biology, 2018, 60(9): 757-779. [16] 曹立勇, 赵建根, 占小登, 等. 水稻耐热性的QTL定位及耐热性与光合速率的相关性[J]. 中国水稻科学, 2003, 17(3): 223-227. [17] 朱昌兰, 肖应辉, 王春明, 等. 水稻灌浆期耐热害的数量性状基因位点分析[J]. 中国水稻科学, 2005, 19(2): 117-121. [18] 赵志刚, 江玲, 肖应辉, 等. 水稻孕穗期耐热性QTLs分析[J]. 作物学报, 2006, 32(5): 640-644. [19] 陈庆全, 余四斌, 李春海, 等. 水稻抽穗开花期耐热性QTL的定位分析[J]. 中国农业科学, 2008, 41(2): 315-321. [20] 张涛, 杨莉, 蒋开锋, 等. 水稻抽穗扬花期耐热性的QTL分析[J]. 分子植物育种, 2008, 6(5): 867-873. [21] ZHANG G L, CHEN L Y, XIAO G Y, et al.Bulked segregant analysis to detect QTL related to heat tolerance in rice ( [22] JAGADISH S V K, CAIRNS J, LAFITTE R, et al. Genetic analysis of heat tolerance at anthesis in rice[J]. Crop Science, 2010, 50(5): 1633-1641. [23] XIAO Y H, PAN Y, LUO L H, et al.Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice ( [24] YE C R, ARGAYOSO M A, REDOÑA E D, et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers[J]. Plant Breeding, 2012, 131(1): 33-41. [25] YE C R, TENORIO F A, ARGAYOSO M A, et al.Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations[J]. BMC Genetics, 2015, 16: 41. [26] YE C R, TENORIO F A, REDOÑA E D, et al. Fine-mapping and validating QHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice[J]. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517. [27] BUU B C, HA P T T, TAM B P, et al. Quantitative trait loci associated with heat tolerance in rice ( [28] PS S, SV A M, PRAKASH C, et al.High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array[J]. Rice, 2017, 10: 28. [29] KILASI N L, SINGH J, VALLEJOS C E, et al.Heat stress tolerance in rice ( [30] 杨梯丰, 刘斌. 水稻耐热性QTL鉴定的研究进展[J]. 广东农业科学, 2009, 36(6): 16-20. [31] LI M M, LI X, YU L Q, et al.Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice ( [32] LI X M, CHAO D Y, WU Y, et al.Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. [33] WEI H, LIU J, WANG Y, et al.A dominant major locus in chromosome 9 of rice ( [34] LIU J P, ZHANG C C, WEI C C, et al.The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. [35] WANG D, QIN B X, LI X, et al.Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice[J]. PLoS Genetics, 2016, 12(2): e1005844. [36] SHEN H, ZHONG X B, ZHAO F F, et al.Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato[J]. Nature Biotechnology, 2015, 33(9): 996-1003. [37] ZHANG H, XU H, FENG M J, et al.Suppression of [38] ZAFAR S A, HAMEED A, NAWAZ M A, et al.Mechanisms and molecular approaches for heat tolerance in rice ( [39] GROVER A, MITTAL D, NEGI M, et al. Generating high temperature tolerant transgenic plants: achievements and challenges[J]. Plant Science, 2013, 205/206: 38-47. [40] SCAFARO A P, ATWELL B J, MUYLAERT S, et al.A thermotolerant variant of rubisco activase from a wild relative improves growth and seed yield in rice under heat stress[J]. Frontiers in Plant Science, 2018, 9: 1663. |
| [1] | HU Tiejun, ZHOU Fei, JIN Shuquan, WANG Feng, CHEN Yutiao. Selection and evaluation of water-saving and drought-resistant rice adaptability in newly (reclaimed) cultivated land in mountainous and hilly areas [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(9): 2084-2089. |
| [2] | LI Chengwei, WEI Haimin, LIU Sheng, MENG Denghui, ZHOU Chenhui. Effects of chemical fertilizer replaced by biogas slurry on the agronomic traits and yield of rice [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(9): 2090-2095. |
| [3] | ZHU Pengfei, WU Mingming, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, LI Mengyang, YE Shenghai, WANG Jian. Analysis of major agronomic traits in late japonica rice varieties released in Zhejiang Province over the years [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1565-1569. |
| [4] | ZHANG Wenbin, REN Junkai, YE Shenghai, ZHANG Guoping. Variety characteristics of Zhejingyou 4 and exploration of its high-yield cultivation techniques [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1583-1586. |
| [5] | LIU Weiwei, LIN Guanghao, YI Jianqun, HE Shuiqing. Key technical points of direct seeding cultivation for ratoon rice [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1587-1591. |
| [6] | CHEN Min, SUN-LUO Mingsheng, SHEN Jiaming, YE Youxiang, ZHAO Guohua. Effects of different forms of nitrogen nutrition on the growth of rice seedlings under tetracycline stress [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1322-1327. |
| [7] | MA Shuangshuang, HUANG Lingling, WANG Wei, YANG Yongdan, ZHAI Rongrong, YE Jing, WU Mingming, YE Shenghai. Progress in molecular mechanism research of indica-japonica hybrid rice [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1297-1307. |
| [8] | GAN Yingying, QIU Gaoyang, GUO Bin, FU Qinglin, ZHANG Junbo, LIU Junli, CHEN Xiaodong. Effects of different varieties and transplanting densities on salt tolerance, root system, and yield of rice in coastal saline-alkali land [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1308-1314. |
| [9] | XU Youxiang, ZHU Zhenling, WANG Yufei, JIANG Jianfeng, YANG Haijun, DONG Xiangwei, LI Chengyong, CHEN Jinpeng, XU Kan, YE Yihao, ZHANG Yan, WANG Honghang, SHAO Guosheng. Effects of rapeseed-rice-bean rotation on soil physicochemical properties and rice trace element content [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1315-1321. |
| [10] | MO Junjie, WU Xiangyun, LIU Wentong, CHEN Churun, GAO Zhichao. Study on variability of separated generations in rice population breeding [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 805-812. |
| [11] | FAN Dejia, CHEN Shiqiang, HE Zhentian, ZHANG Rong, WANG Ruqin, CHENG Menghao, WANG Jianhua. Character analysis of rice varieties approved through different test channels in Jiangsu Province [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 819-825. |
| [12] | LI Kun, LIU Zhonglai, CAO Guojun, PAN Shiwen, YU Xuan, ZHANG Yiyue, WANG Zhiquan. Study on productivity of 4 conventional japonica rice varieties in northern Jiangxi Province [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 826-829. |
| [13] | ZHANG Xinyue, YE Shenghai, DONG Junjie, FU Haowei, LI Youfa. Breeding of new indica-japonica hybrid rice combination Zhejingjiayou 710 with high yield and good quality [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 830-833. |
| [14] | ZHANG Chengxiang, LI Bai, LU Jingen, GAO Rongcun. Breeding of a new high-quality and disease-resistant three-line hybrid japonica rice variety Jiayou 10 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 834-837. |
| [15] | QI Yongbin, WANG Linyou, LYU Xiangchao, JIANG Genshui, ZHANG Haodi. Breeding, characteristics and cultivation techniques of a new high yield and long-grain indica and japonica hybrid rice variety Zheyou 77 [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 838-842. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||