
Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (12): 3066-3072.DOI: 10.16178/j.issn.0528-9017.20240331
Previous Articles Next Articles
BU Aiai1,2(
), HU Juanxin1,2, FANG Shuqin1,2, XUE Zhaokun1,2, YU Keru1,2, FANG Xianzhi1,2, MA Jiawei1,2, LIU Dan1,2, YE Zhengqian1,2,*(
)
Received:2024-09-23
Online:2025-12-11
Published:2025-12-17
CLC Number:
BU Aiai, HU Juanxin, FANG Shuqin, XUE Zhaokun, YU Keru, FANG Xianzhi, MA Jiawei, LIU Dan, YE Zhengqian. Effect of different improvement measures on soil fertility and crop yield in reclaimed Lei bamboo forest[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(12): 3066-3072.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240331
| [1] | 王明芳, 周菊敏, 邵香君, 等. 浙江临安雷竹林适度规模经营的探索[J]. 世界竹藤通讯, 2018, 16(6): 17-19, 25. |
| [2] | 孙晓, 庄舜尧, 刘国群, 等. 集约经营下雷竹种植对土壤基本性质的影响[J]. 土壤, 2009, 41(5): 784-789. |
| [3] | 陈珊, 陈双林. 集约经营对雷竹林生态系统稳定性的影响[J]. 浙江农林大学学报, 2013, 30(4): 578-584. |
| [4] | DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification: a critical review[J]. Science of the Total Environment, 2017, 581/582: 601-611. |
| [5] | 阮弋飞, 邬奇峰, 张丹, 等. 临安市主要农地土壤酸化特征及其改良技术探讨[J]. 农学学报, 2016, 6(3): 21-26. |
| [6] | 陈燕霞, 唐晓东, 游媛, 等. 石灰和沸石对酸化菜园土壤改良效应研究[J]. 广西农业科学, 2009, 40(6): 700-704. |
| [7] | LINH T B, SLEUTEL S, ELSACKER S V, et al. Inclusion of upland crops in rice-based rotations affects chemical properties of clay soil[J]. Soil Use and Management, 2015, 31(2): 313-320. |
| [8] | 敖俊华, 黄振瑞, 江永, 等. 石灰施用对酸性土壤养分状况和甘蔗生长的影响[J]. 中国农学通报, 2010, 26(15): 266-269. |
| [9] | BASU M, BHADORIA P B S, MAHAPATRA S C. Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels[J]. Bioresource Technology, 2008, 99(11): 4675-4683. |
| [10] | CHEN D L, WANG X X, CARRIÓN V J, et al. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies[J]. Soil Biology and Biochemistry, 2022, 167: 108599. |
| [11] | 方克明, 肖欣, 王美玲, 等. 农用石灰在酸性及镉污染稻田中试效果[J]. 中国农学通报, 2021, 37(26): 93-97. |
| [12] | DANG T, MOSLEY L M, FITZPATRICK R, et al. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release[J]. Environmental Science and Pollution Research International, 2016, 23(23): 23582-23592. |
| [13] | WU S W, ZHANG Y, TAN Q L, et al. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin[J]. Science of the Total Environment, 2020, 714: 136722. |
| [14] | BUSSCHER W J, NOVAK J M, EVANS D E, et al. Influence of pecan biochar on physical properties of a Norfolk loamy sand[J]. Soil Science, 2010, 175(1): 10-14. |
| [15] | ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1): 1-18. |
| [16] | LIU H, LI S S, QIANG R W, et al. Response of soil microbial community structure to phosphate fertilizer reduction and combinations of microbial fertilizer[J]. Frontiers in Environmental Science, 2022, 10: 899727. |
| [17] | 孙洪仁, 张吉萍, 冮丽华, 等. 中国水稻土壤氮素丰缺指标与适宜施氮量[J]. 中国农学通报, 2019, 35(11): 82-87. |
| [18] | GU W Q, WANG Y N, FENG Z B, et al. Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and japonica rice production system[J]. Frontiers in Environmental Science, 2022, 10: 902752. |
| [19] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [20] | 杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056. |
| [21] | MAGALHÃES T M. Trees in agricultural landscapes maintain soil organic carbon following miombo woodland conversion to shifting cultivation[J]. Geoderma, 2023, 429: 116241. |
| [22] | MAGALHÃES T M, MAMUGY F P S. Fine root biomass and soil properties following the conversion of miombo woodlands to shifting cultivation lands[J]. CATENA, 2020, 194: 104693. |
| [23] | 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526-535. |
| [24] | KUMAR U, KAVIRAJ M, PANNEERSELVAM P, et al. Conversion of mangroves into rice cultivation alters functional soil microbial community in sub-humid tropical paddy soil[J]. Frontiers in Environmental Science, 2022, 10: 858028. |
| [25] | 谢国雄, 章明奎. 施用生物质炭对红壤有机碳矿化及其组分的影响[J]. 土壤通报, 2014, 45(2): 413-419. |
| [26] | KIMETU J M, LEHMANN J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil Research, 2010, 48(7): 577. |
| [27] | 潘根兴, 周萍, 张旭辉, 等. 不同施肥对水稻土作物碳同化与土壤碳固定的影响: 以太湖地区黄泥土肥料长期试验为例[J]. 生态学报, 2006, 26(11): 3704-3710. |
| [28] | CAI Z J, WANG B R, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of Southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270. |
| [29] | 连旭东, 张璐, 刘思汝, 等. 作物产量对土壤pH的响应差异及其影响因素[J]. 植物营养与肥料学报, 2023, 29(9): 1618-1629. |
| [30] | AI C, LIANG G Q, SUN J W, et al. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition[J]. Biology and Fertility of Soils, 2015, 51(4): 465-477. |
| [31] | LIU X Y, QU J J, LI L Q, et al. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?: a cross site field experiment from South China[J]. Ecological Engineering, 2012, 42: 168-173. |
| [32] | NOOR S, AKHTER S, ISLAM M M, et al. Effect of magnesium on crop yields within maize-green manure-T. aman rice cropping pattern on acid soil[J]. Archives of Agronomy and Soil Science, 2015, 61(10): 1381-1392. |
| [33] | OLADELE S O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice-maize cropping sequence[J]. Geoderma, 2019, 353: 359-371. |
| [34] | CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. |
| [35] | ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320. |
| [36] | WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876): 629. |
| [37] | WARNOCK D D, LEHMANN J, KUYPER T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1): 9-20. |
| [38] | 陈重军, 凌学林, 邢龙, 等. 减肥条件下生物质炭施用对水稻田土壤细菌多样性的影响[J]. 农业资源与环境学报, 2021, 38(3): 385-392. |
| [39] | BYSS M, ELHOTTOVÁ D, TŘÍSKA J, et al. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study[J]. Chemosphere, 2008, 73(9): 1518-1523. |
| [40] | 廖育林, 鲁艳红, 聂军, 等. 长期施肥稻田土壤基础地力和养分利用效率变化特征[J]. 植物营养与肥料学报, 2016, 22(5): 1249-1258. |
| [41] | 王文慧, 蒋志慧, 张纪, 等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料, 2023(6): 147-153. |
| [42] | 郑云珠, 孙树臣. 单季施用生物炭提高土壤肥力及小麦玉米轮作周年产量[J]. 江苏农业科学, 2022, 50(20): 257-264. |
| [43] | 惠超, 杨卫君, 宋世龙, 等. 生物炭施用对麦田土壤团聚体机械稳定性及春小麦产量的影响[J]. 土壤通报, 2022, 53(2): 349-355. |
| [44] | 李丽, 韩周, 张昀, 等. 减氮配施微生物菌剂对水稻根系发育及土壤酶活性的影响[J]. 土壤通报, 2019, 50(4): 932-939. |
| [45] | 郭书亚, 尚赏, 张艳, 等. 生物炭施用五年后对土壤生物化学特性及夏玉米产量的影响[J]. 土壤与作物, 2022, 11(3): 290-297. |
| [1] | LI Hui, LIN Jitong, SHAO Qi, LOU Yanhong, WANG Hui, YANG Quangang, PAN Hong, ZHUGE Yuping. Progress of effect of various fertilization patterns on soil phosphatase and its functional genes [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2032-2038. |
| [2] | YING Hong, LUO Yan, JIN Shuquan, ZHOU Jinbo, WANG Minghu. Structural and adsorption properties of different biochar derived from agricultural and forestry wastes [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2039-2046. |
| [3] | SHI Haojie, LI Shuai, MA Jiawei, YE Zhengqian, FU Liqing, WANG Xudong. Effects of biochar application on rice growth and cadmium content under water deficiency conditions [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1570-1577. |
| [4] | JIANG Hongying, MA Ling, ZHANG Zhenwu, WU Huixin, XING Chenghua. Effects of biochar-immobilized Aspergillus niger on the degradation of deltamethrin in tea garden soil [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1603-1606. |
| [5] | GU Xueping, ZHANG Yiqun, LI Yaping, SUN Jian, DUAN Xiaojing, LIU Yingying, TAO Zhengming, JIANG Wu, CHEN Jiadong. Study of the effect of biochar on alleviating the continuous cropping obstacle of Curcuma wenyujin Y.H. Chen & C. Ling [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1616-1620. |
| [6] | BAI Songhua, NI Jinzhuang, PAN Haoliang, SHAO Yujing, LOU Ling, GU Wanfan, ZHU Shenghua. Comparison of the application effects of two acidic soil conditioners in greenhouse vegetables [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(6): 1385-1388. |
| [7] | ZHANG Fujian, CHEN Lei, HUI Yanhua, YAO Wenwu, XU Min, LU Yan, SHENG Haian, GU Jingyu, GONG Kai, JIANG Huiping. Effect of compound fertilizer combined with biochar and humic acid on the agronomic traits of Acorus calamus [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(5): 1195-1200. |
| [8] | LIU Qin. Effects of garden waste compost and biochar on the physicochemical properties of coastal saline soils [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(5): 1257-1262. |
| [9] | LIU Shuxin, WU Dongtao, LI Hanmei, DING Fenghua. Study on the alleviating effect of different application methods of biochar on continuous cropping obstacles in broad bean [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(4): 935-939. |
| [10] | MA Liang, JIN Xinmei, ZHANG Weixing, FANG Yunfeng. Effects of biochar and organic fertilizer on soil properties and rice growth [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 580-584. |
| [11] | SUN Xiaowei, YAO Jian, WANG Jing, HE Bing, ZHANG Xingbo, LI Jianhua, XUE Gang. Study on tobacco-based crop rotation and intercropping mode in Xuchang tobacco area [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 329-335. |
| [12] | FANG Dan, XU Shuangjiao, TIAN Xinquan, WU Yunjing, WEI Xi, MA Lei. Study progress on plant-derived biochar for the removal and detection of pesticide residues [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(11): 2751-2758. |
| [13] | FANG Bao, HE Guoyou, SHEN Junru, TANG Xubing, REN Longhui, ZHEN Anzhong, LAN Yufeng, KONG Chuisi. Effects of rotating different crops with cigar tobacco on the rhizosphere soil bacterial community [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(11): 2772-2778. |
| [14] | FAN Kedi, WANG Xuefeng, MA Liya, HU Zefan, YE Xuezhu, YE Tingyun, CHEN De. Effects of reduced chemical fertilization on the cauliflower growth and soil properties [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(10): 2368-2371. |
| [15] | JIANG Hongying, ZHANG Zhenwu, XING Chenghua. Application of biochar-based immobilization of deltamethrin-degrading bacteria [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(10): 2493-2497. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||