[1] |
王冰, 李家洋, 王永红. 生长素调控植物株型形成的研究进展[J]. 植物学通报, 2006, 41(5): 443-458.
|
[2] |
岑林钢, 施泽彬. 梨树二次开花的成因与防控技术研究进展[J]. 浙江农业科学, 2022, 63(8): 1738-1742.
|
[3] |
付正莉, 刘蕊, 王宁宁, 等. 植物分枝发育调控的研究进展[J]. 江苏农业科学, 2018, 46(13): 17-21.
|
[4] |
杨洪斌, 廖兴建. 植物顶端优势机理的研究进展[J]. 生物学教学, 2020, 45(10): 75-77.
|
[5] |
LUO Z W, JANSSEN B J, SNOWDEN K C. The molecular and genetic regulation of shoot branching[J]. Plant Physiology, 2021, 187(3): 1033-1044.
|
[6] |
牟德生, 王鑫, 赵连鑫, 等. 不同梨品种对刻芽和撑枝修剪技术措施的反应差异研究[J]. 甘肃科技, 2022, 38(22): 136-138.
|
[7] |
王兴静. 植物生长调节剂对梨幼树萌芽抽枝效果的影响[D]. 保定: 河北农业大学, 2013.
|
[8] |
柴全喜, 张彦武, 何新朝, 等. 梨幼树刻芽试验[J]. 山西果树, 2003(2): 11-13.
|
[9] |
白松龄, 牛庆丰, 滕元文. 梨芽内休眠分子调控机制研究进展[J]. 果树学报, 2016, 33(S1): 1-9.
|
[10] |
李秀根, 张绍玲. 中国梨树志[M]. 北京: 中国农业出版社, 2020: 42-44.
|
[11] |
罗来水. 梨树萌芽率和成枝力变化的初步观察[J]. 园艺学报, 1965(1): 49-52.
|
[12] |
薛晓敏. 几种新、优日韩梨品种生物学特性研究[D]. 保定: 河北农业大学, 2005.
|
[13] |
张建光, 张江红, 许建锋, 等. 刻芽对黄冠梨高接树萌芽和成枝的影响[J]. 中国果树, 2010(4): 26-28.
|
[14] |
杨健, 李秀根, 王龙, 等. 中熟梨新品种‘中梨2号’的选育[J]. 果树学报, 2016, 33(11): 1453-1455.
|
[15] |
刘金利, 崔丽贤, 张海娥, 等. 刻芽对不同品种梨树萌芽率与成枝力的影响[J]. 河北农业科学, 2012, 16(9): 37-39, 43.
|
[16] |
姜英林, 冯霄汉. 刻芽与药剂处理对三季梨萌芽成枝的影响[J]. 中国园艺文摘, 2017, 33(9): 54, 87.
|
[17] |
李俊才, 沙守峰, 王家珍, 等. “早金酥梨”圆柱形整形过程中常见错误与适宜技术[J]. 北方园艺, 2018(10): 206-207.
|
[18] |
王越男. 密植梨树成形技术研究[D]. 邯郸: 河北工程大学, 2020.
|
[19] |
范林洁, 王立如, 徐绍清, 等. 促萌措施对梨树侧枝萌芽及生长的影响[J]. 上海农业科技, 2022(2): 63-64, 91.
|
[20] |
令狐田, 刘珊珊, 赵志霞, 等. 植物生长调节剂对砀山酥梨苗木萌芽成枝的影响[J]. 绿色科技, 2023, 25(1): 105-107, 112.
|
[21] |
牛自勉, 李全, 郜晓梦, 等. 苹果短枝型品种树形结构对果实质量的影响[J]. 山西果树, 1994(2): 4-5, 17.
|
[22] |
丁想, 周伟权, 麦合木提·图如普, 等. 刻芽和拉枝对库尔勒香梨生长发育的影响[J]. 新疆农业科学, 2021, 58(11): 2084-2093.
|
[23] |
闫帅, 徐锴, 袁继存, 等. 刻芽及涂抹发枝素对早酥梨芽体内源激素的影响[J]. 中国南方果树, 2017, 46(1): 20-23.
|
[24] |
马青翠. 杜梨坐地和移栽定植砧木对梨苗生长的影响及中心干刻芽效应分析[D]. 保定: 河北农业大学, 2015.
|
[25] |
苏艳丽, 李秀根, 杨健, 等. 刻芽与扭枝对梨不同优系成枝力和成花数的影响[J]. 经济林研究, 2017, 35(2): 105-109.
|
[26] |
刘秀丽, 王农茂, 黄军道. 改变早酥梨成枝率低的新方法[J]. 北方果树, 2006(1): 3: 55.
|
[27] |
郭晶, 刘小利, 魏海斌. 黄果梨整形修剪技术试验[J]. 青海大学学报, 2022, 40(4): 25-30.
|
[28] |
陈敏. 梨黄化病矫治及其促枝成花技术的应用研究[D]. 杨凌: 西北农林科技大学, 2022.
|
[29] |
张琦, 陈俊, 杨梦宇, 等. 拉枝、环割(剥)对干旱荒漠区富士苹果成花坐果的影响[J]. 新疆农业科学, 2021, 58(6): 1071-1077.
|
[30] |
吴定尧, 邱金淡, 张海岚, 等. 环割促进龙眼成花的研究[J]. 中国农业科学, 2000, 33(6): 40-43.
|
[31] |
冯刚, 裴文, 吴亚云, 等. 环割和摘心对薄壳山核桃枝条生长和叶片碳氮代谢物积累的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6): 8-12.
|
[32] |
廖立安, 李志光, 曹建明. 翠冠梨引种试验及整形拉枝对其经济性状的影响[J]. 中南林学院学报, 2003, 23(2): 79-81.
|
[33] |
范秀华, 沈焕忠, 汪国云, 等. 南方蜜梨雪青梨的高效栽培技术[J]. 浙江农业科学, 2009, 50(1): 66-67.
|
[34] |
位杰, 姜峰, 马建江, 等. 密植省力化香梨整形修剪技术[J]. 北方园艺, 2020(8): 164-166.
|
[35] |
张驰, 马媛媛, 张琦. 不同梨品种(系)主干形促发分枝和花芽形成效果比较[J]. 江苏农业科学, 2022, 50(15): 108-114.
|
[36] |
缪泽群, 褚世林, 彭晓果, 等. 外源激素对茶树新梢生长及生理活性的影响[J]. 中国茶叶, 1982, 4(6): 39-40, 43.
|
[37] |
邱春莲, 齐国辉. 植物生长调节剂在果树生产中的应用[J]. 河北果树, 2004(4): 1-3, 35.
|
[38] |
张乃文, 董彩霞, 徐阳春. 梨树修剪枝和果实从树体移走的养分研究[J]. 南京农业大学学报, 2013, 36(4): 37-42.
|
[39] |
许维纯, 辛保军, 曹尚银. N-6苄氨基嘌呤促进苹果幼树侧芽萌发效应的探讨[J]. 果树科学, 1986, 3(3): 22-26.
|
[40] |
孟祥谦, 邹宗峰, 曲诚怀, 等. 不同植物生长调节剂对苹果新梢及叶片生长的调控效果[J]. 浙江农业科学, 2023, 64(6): 1515-1518.
|
[41] |
史晓梅, 金芬, 黄玉婷, 等. 水果中常用植物生长调节剂的研究进展[J]. 食品工业科技, 2012, 33(4): 417-422, 426.
|
[42] |
高华, 袁仲玉, 刘振中, 等. 不同修剪处理对苹果幼树一年生光腿枝萌芽和新梢生长的影响[J]. 北方园艺, 2016(21): 45-48.
|
[43] |
张庆伟, 韩明玉, 赵彩平. 苹果苗木及幼树促分枝技术研究进展[J]. 果树学报, 2011, 28(1): 108-113.
|
[44] |
刘雅, 张虎平, 张绍铃, 等. 梨萌芽期僵芽和正常芽的生理差异分析[J]. 南京农业大学学报, 2016, 39(3): 373-378.
|
[45] |
钟林炳, 王道泽, 黄越, 等. 不同类型微生物肥料在梨树栽培上的应用[J]. 浙江农业科学, 2021, 62(2): 314-319, 420.
|
[46] |
秦景逸, 张云, 王秀梅, 等. 植物生长调节剂浸根对苹果苗生长发育的影响[J]. 天津农业科学, 2017, 23(1): 72-76.
|
[47] |
王林林. 调环酸钙对富士苹果枝条生长结果成花内源激素以及赤霉素相关基因表达的影响[D]. 杨凌: 西北农林科技大学, 2021.
|
[48] |
郑传亮, 张琦. 6-BA和GA对新梨七号芽体抽枝能力的影响[J]. 新疆林业, 2013(6): 21-22.
|
[49] |
CHENG Y Y, LIANG C L, QIU Z Y, et al. Jasmonic acid negatively regulates branch growth in pear[J]. Frontiers in Plant Science, 2023, 14: 1105521.
|
[50] |
IUCHI T, IUCHI V L, HERTER F G, et al. Anelamento e paclobutrazol na produção e absorção de nutrientes em pereira (Pyrus communis L.) cultivar packham's triumph[J]. Revista Brasileira De Fruticultura, 2008, 30(4): 857-861.
|
[51] |
HAN R, WANG S, LIU C Y, et al. Transcriptome analysis of a multiple-branches mutant terminal buds in Betula platyphylla×B. pendula[J]. Forests, 2019, 10(5): 374.
|
[52] |
GRBIĆ V, BLEECKER A B. Axillary meristem development in Arabidopsis thaliana[J]. The Plant Journal, 2000, 21(2): 215-223.
|
[53] |
TANAKA W, PAUTLER M, JACKSON D, et al. Grass meristems Ⅱ: inflorescence architecture, flower development and meristem fate[J]. Plant and Cell Physiology, 2013, 54(3): 313-324.
|
[54] |
DEPUYDT S, HARDTKE C S. Hormone signalling crosstalk in plant growth regulation[J]. Current Biology, 2011, 21(9): R365-R373.
|
[55] |
BEMER M, VAN MOURIK H, MUIÑO J M, et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture[J]. Journal of Experimental Botany, 2017, 68(13): 3391-3403.
|
[56] |
KOTOV A A, KOTOVA L M, ROMANOV G A. Signaling network regulating plant branching: recent advances and new challenges[J]. Plant Science, 2021, 307: 110880.
|
[57] |
TANAKA M, TAKEI K, KOJIMA M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J]. The Plant Journal, 2006, 45(6): 1028-1036.
|
[58] |
ZAWASKI C, BUSOV V B. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees[J]. PLoS One, 2014, 9(1): e86217.
|
[59] |
FAMBRINI M, SALVINI M, PUGLIESI C. Molecular cloning, phylogenetic analysis, and expression patterns of lateral suppressor-like and regulator of axillary meristem formation-like genes in sunflower (Helianthus annuus l.)[J]. Development Genes and Evolution, 2017, 227(2): 159-170.
|
[60] |
NIE J, WEN C, XI L, et al. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance[J]. Plant Cell Reports, 2018, 37(7): 1049-1060.
|
[61] |
WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058.
|
[62] |
CAMPOS M L, KANG J H, HOWE G A. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 2014, 40(7): 657-675.
|
[63] |
GAO R M, GRUBER M Y, AMYOT L, et al. SPL13 regulates shoot branching and flowering time in Medicago sativa[J]. Plant Molecular Biology, 2018, 96(1/2): 119-133.
|
[64] |
STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Current Opinion in Plant Biology, 2001, 4(5): 447-456.
|
[65] |
AGUILAR-MARTÍNEZ J A, POZA-CARRIÓN C, CUBAS P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell, 2007, 19(2): 458-472.
|
[66] |
MARTÍN-TRILLO M, CUBAS P. TCP genes: a family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1): 31-39.
|
[67] |
WANG X B, WANG Q P, YAN L X, et al. PpTCP18 is upregulated by lncRNA5 and controls branch number in peach (Prunus persica) through positive feedback regulation of strigolactone biosynthesis[J]. Horticulture Research, 2023, 10(1): uhac224.
|
[68] |
LI G F, TAN M, MA J J, et al. Molecular mechanism of MdWUS2-MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth[J]. Journal of Experimental Botany, 2021, 72(13): 4822-4838.
|
[69] |
TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3): 513-520.
|
[70] |
WAI A H, AN G. Axillary meristem initiation and bud growth in rice[J]. Journal of Plant Biology, 2017, 60: 440-451.
|
[71] |
MEHRNIA M, BALAZADEH S, ZANOR M I, et al. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis[J]. Plant Physiology, 2013, 162(2): 842-857.
|
[72] |
KURAKAWA T, UEDA N, MAEKAWA M, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655.
|
[73] |
LIGEROT Y, DE SAINT GERMAIN A, WALDIE T, et al. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop[J]. PLoS Genetics, 2017, 13(12): e1007089.
|
[74] |
ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1): 348.
|