[1] |
毛晓红, 刘国霞, 张秀霞, 等. 瓜蚜在西葫芦植株上传播获取西瓜花叶病毒的效率及西瓜花叶病毒病的发生规律[J]. 植物保护学报, 2018, 45(6): 1274-1280.
|
[2] |
张国军, 师宝君, 成卫宁. 不同药剂对黄瓜蚜虫的防治效果研究[J]. 陕西农业科学, 2021, 67(2): 76-78, 96.
|
[3] |
梁彦, 张帅, 邵振润, 等. 棉蚜抗药性及其化学防治[J]. 植物保护, 2013, 39(5): 70-80.
|
[4] |
刘梦铭. 瓜蚜对吡虫啉等抗性检测及快速选药技术初探[D]. 泰安: 山东农业大学, 2019.
|
[5] |
孙瑞红, 姜莉莉, 武海斌, 等. 中国桃蚜防治药剂及抗药性发展[J]. 农药, 2020, 59(1): 1-5.
|
[6] |
汤秋玲, 马康生, 高希武. 蔬菜蚜虫抗药性现状及抗性治理策略[J]. 植物保护, 2016, 42(6): 11-20.
|
[7] |
高德良, 庄占兴, 宋化稳, 等. 氟啶虫胺腈等7种杀虫剂对西瓜蚜虫防效比较[J]. 长江蔬菜, 2019(14): 65-67.
|
[8] |
雷娟利, 岳智臣, 陶鹏, 等. 拮抗菌DG1的鉴定及其对大白菜菌核病菌的抑制作用研究[J]. 核农学报, 2022, 36(1): 42-49.
|
[9] |
高芸. 生防芽孢杆菌及假单胞菌拮抗植物微生物病害研究进展[J]. 北方园艺, 2021(2): 131-136.
|
[10] |
SATTAR S, MAITI M K. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest[J]. Journal of Microbiology and Biotechnology, 2011, 21(9): 937-946.
|
[11] |
AJUNA H B, KIM I, HAN Y S, et al. Aphicidal activity of Bacillus thuringiensis strain AH-2 against cotton aphid (Aphis gossypii)[J]. Entomological Research, 2021, 51(4): 151-160.
|
[12] |
竺利红, 张红, 施跃峰. 解淀粉芽孢杆菌HZ179制剂防治茄科作物瓜蚜药效试验[J]. 浙江农业科学, 2017, 58(6): 1031-1032.
|
[13] |
东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
|
[14] |
YAMAMOTO S, HARAYAMA S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Applied and Environmental Microbiology, 1995, 61(3): 1104-1109.
|
[15] |
贾彦霞, 庞洪翠, 姜灵, 等. 辣椒叶片中单宁和总酚含量与其对西花蓟马抗性的关系[J]. 植物保护学报, 2018, 45(5): 1183-1184.
|
[16] |
蔡冲, 徐盈盈, 崔旭红. 番茄不同抗性品种响应B型烟粉虱胁迫的生理特性[J]. 中国农业科学, 2016, 49(13): 2524-2533.
|
[17] |
王晓琳, 吴琴燕, 彭燕琼, 等. 2种生物诱抗剂对葡萄霜霉病的诱导抗病作用[J]. 中国农学通报, 2021, 37(32): 127-131.
|
[18] |
刘艳红, 马瑞燕, 刘同先. 不同地区不同寄主植物上孤雌桃蚜及不同蚜型桃蚜共生菌的多样性[J]. 植物保护学报, 2018, 45(4): 679-688.
|
[19] |
THAO M L, BAUMANN P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae)[J]. Current Microbiology, 2004, 48(2): 140-144.
|
[20] |
ZCHORI-FEIN E, BROWN J K. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)[J]. Annals of the Entomological Society of America, 2002, 95(6): 711-718.
|
[21] |
TSUCHIDA T, KOGA R, SHIBAO H, et al. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum[J]. Molecular Ecology, 2002, 11(10): 2123-2135.
|
[22] |
GOTTLIEB Y, GHANIM M, CHIEL E, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae)[J]. Applied and Environmental Microbiology, 2006, 72(5): 3646-3652.
|
[23] |
ZHOU H, KUANG J, ZHONG L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation[J]. Nature Genetics, 1998, 20(2): 189-193.
|
[24] |
RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river VÉlez in Málaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 1): 191-195.
|
[25] |
张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649.
|
[26] |
DUNLAP C A, KIM S J, KWON S W, et al. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7): 2104-2109.
|
[27] |
李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983.
|
[28] |
王若琳, 徐伟芳, 王飞, 等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143.
|
[29] |
姚锦爱, 黄鹏, 赖宝春, 等. 贝莱斯芽孢杆菌ZZBV-3的鉴定及其对草莓根腐病的防效[J]. 中国生物防治学报, 2021, 37(1): 172-177.
|
[30] |
张晓勇, 李树江, 严凯, 等. 杧果采后炭疽病生防菌株筛选及其培养特性研究[J]. 园艺学报, 2021, 48(11): 2171-2184.
|
[31] |
蔡高磊, 张凡, 欧阳友香, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2018(12): 162-167.
|
[32] |
TRINH T H T, WANG S L, NGUYEN V B, et al. A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 2019, 45(11): 5309-5323.
|
[33] |
CUI L X, YANG C D, WEI L J, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2020, 141: 104156.
|
[34] |
RASHID M H O, KHAN A, HOSSAIN M T, et al. Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 211.
|
[35] |
HARUN-OR-RASHID M, KIM H J, YEOM S I, et al. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice[J]. Frontiers in Plant Science, 2018, 9: 1904.
|
[36] |
张红娟. 内生菌HT-5的鉴定及其对番茄早疫病的生防作用[D]. 太谷: 山西农业大学, 2015.
|
[37] |
HUANG C N, LIN C P, HSIEH F C, et al. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars[J]. World Journal of Microbiology & Biotechnology, 2016, 32(11): 183.
|
[38] |
BARBEHENN R V, JAROS A, LEE G, et al. Hydrolyzable tannins as “quantitative defenses”: Limited impact against Lymantria dispar caterpillars on hybrid poplar[J]. Journal of Insect Physiology, 2009, 55(4): 297-304.
|
[39] |
王予彤, 越慧芳, 王晓丽, 等. 外源茉莉酸诱导的青杨生化抗性及其对舞毒蛾幼虫食物利用的影响[J]. 昆虫学报, 2015, 58(6): 673-679.
|
[40] |
王四宝, 曲爽. 昆虫共生菌及其在病虫害防控中的应用前景[J]. 中国科学院院刊, 2017, 32(8): 863-872.
|
[41] |
CACCIA S, DI LELIO I, LA STORIA A, et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): 9486-9491.
|
[42] |
DOUGLAS A E. Multiorganismal insects: diversity and function of resident microorganisms[J]. Annual Review of Entomology, 2015, 60: 17-34.
|