浙江农业科学 ›› 2025, Vol. 66 ›› Issue (3): 769-775.DOI: 10.16178/j.issn.0528-9017.20231148
王薇薇(), 沈峰, 吴永成, 梅燚, 郑佳秋(
), 祖艳侠, 刘哲, 张丽娜, 冯汝超
收稿日期:
2023-12-01
出版日期:
2025-03-11
发布日期:
2025-04-02
通讯作者:
郑佳秋
作者简介:
郑佳秋,副研究员,从事蔬菜栽培及育种工作,E-mail:110647874@qq.com。基金资助:
WANG Weiwei(), SHEN Feng, WU Yongcheng, MEI Yi, ZHENG Jiaqiu(
), ZU Yanxia, LIU Zhe, ZHANG Lina, FENG Ruchao
Received:
2023-12-01
Online:
2025-03-11
Published:
2025-04-02
Contact:
ZHENG Jiaqiu
摘要:
土壤盐渍化是影响植物生长发育的主要非生物胁迫因子。本文介绍了盐胁迫对植物生长的影响、植物对盐胁迫响应的分子机制和植物耐盐性分子遗传育种研究进展,并对其研究前景进行展望,为培育耐盐植物和提高植物耐盐性的相关工作提供理论参考。
中图分类号:
王薇薇, 沈峰, 吴永成, 梅燚, 郑佳秋, 祖艳侠, 刘哲, 张丽娜, 冯汝超. 植物耐盐分子机制及分子遗传育种研究进展[J]. 浙江农业科学, 2025, 66(3): 769-775.
WANG Weiwei, SHEN Feng, WU Yongcheng, MEI Yi, ZHENG Jiaqiu, ZU Yanxia, LIU Zhe, ZHANG Lina, FENG Ruchao. Research progress on molecular mechanism and molecular genetic breeding of plant salt tolerance[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(3): 769-775.
[1] | 史晓龙, 郭佩, 任婧瑶, 等. 基于花生/高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[2] | 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1): 84-87. |
[3] | 边兰星, 梁丽琨, 颜坤, 等. 木霉对盐胁迫下枸杞根与叶内离子平衡和光系统Ⅱ 的影响[J]. 中国农业科学, 2022, 55(12): 2413-2424. |
[4] | 韦还和, 张徐彬, 葛佳琳, 等. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
[5] | 陈家力, 姜喜, 谭占明, 等. 3种盐胁迫对桂桑优12种子萌发特性的影响[J]. 新疆农业科学, 2022, 59(1): 205-214. |
[6] | 潘平新, 倪强, 马瑞, 等. 不同盐分处理对黑果枸杞种子萌发和幼苗生长的影响[J]. 草地学报, 2021, 29(2): 342-348. |
[7] | 顾逸彪, 颜佳倩, 薛张逸, 等. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023(2): 67-76. |
[8] | 李焕勇, 廖方舟, 刘景超, 等. 盐胁迫对甜樱桃砧木生理特性及光合荧光参数的影响[J]. 西北植物学报, 2023, 43(1): 127-135. |
[9] | 朱天奇, 鲁泽宇, 胡桑源, 等. 盐胁迫对两个高羊茅品种幼苗生长及生理特性的影响[J]. 草地学报, 2022, 30(8): 2082-2088. |
[10] | 孙叶烁, 张国新, 丁守鹏, 等. 盐胁迫对樱桃番茄风味品质的影响[J]. 核农学报, 2022, 36(4): 838-844. |
[11] | 肖丹丹, 李军, 邓先亮, 等. 不同品种稻米品质形成对盐胁迫的响应[J]. 核农学报, 2020, 34(8): 1840-1847. |
[12] | 潘凌云, 马家冀, 李建民, 等. 植物盐胁迫应答转录因子的研究进展[J]. 生物工程学报, 2022, 38(1): 50-65. |
[13] | NONGPIUR R C, SINGLA-PAREEK S L, PAREEK A. The quest for osmosensors in plants[J]. Journal of Experimental Botany, 2020, 71(2): 595-607. |
[14] | KIEGLE E, MOORE C A, HASELOFF J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root[J]. The Plant Journal, 2000, 23(2): 267-278. |
[15] | MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467. |
[16] | MA D M, XU W R, LI H W, et al. Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.)[J]. Protoplasma, 2014, 251(1): 219-231. |
[17] | ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
[18] | ZHAO C Y, WILLIAM D, SANDHU D. Isolation and characterization of Salt Overly Sensitive family genes in spinach[J]. Physiologia Plantarum, 2021, 171(4): 520-532. |
[19] | MA L Y, ZHANG H, SUN L R, et al. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress[J]. Journal of Experimental Botany, 2012, 63(1): 305-317. |
[20] | DRERUP M M, SCHLÜCKING K, HASHIMOTO K, et al. The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF[J]. Molecular Plant, 2013, 6(2): 559-569. |
[21] | KHAN S A, LI M Z, WANG S M, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress[J]. International Journal of Molecular Sciences, 2018, 19(6): 1634. |
[22] | YU J, ZHU C S, XUAN W, et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice[J]. Nature Communications, 2023, 14: 3550. |
[23] | DOSSA K, MMADI M A, ZHOU R, et al. Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis[J]. AoB PLANTS, 2020, 12(1): plz081. |
[24] | XU Z Y, GONGBUZHAXI, WANG C Y, et al. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiology and Biochemistry, 2015, 96: 356-363. |
[25] | GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science, 2020, 11: 139. |
[26] | ZHANG T P, LI Z M, LI D X, et al. Comparative effects of glycinebetaine on the thermotolerance in codA- and BADH-transgenic tomato plants under high temperature stress[J]. Plant Cell Reports, 2020, 39(11): 1525-1538. |
[27] | FUJIWARA T, HORI K, OZAKI K, et al. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley[J]. Physiologia Plantarum, 2008, 134(1): 22-30. |
[28] | SUN Y L, LIU X, FU L S, et al. Overexpression of TaBADH increases salt tolerance in Arabidopsis[J]. Canadian Journal of Plant Science, 2019, 99(4): 546-555. |
[29] | YOU X, NASRULLAH, WANG D, et al. N7-SSPP fusion gene improves salt stress tolerance in transgenic Arabidopsis and soybean through ROS scavenging[J]. Plant, Cell & Environment, 2022, 45(9): 2794-2809. |
[30] | GARRIGA M, RADDATZ N, VÉRY A A, et al. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.: relationship to plant response to salt stress[J]. Journal of Plant Physiology, 2017, 210: 9-17. |
[31] | CHEN C J, TRAVIS A J, HOSSAIN M, et al. Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation[J]. Theoretical and Applied Genetics, 2021, 134(7): 2315-2334. |
[32] | VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. |
[33] | ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. The Innovation, 2020, 1(1): 100017. |
[34] | 江建霞, 张俊英, 杨立勇, 等. 盐胁迫对甘蓝型油菜种子萌发的影响[J/OL]. 分子植物育种, 1-12[2025-01-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20230615.1538.014.html. |
[35] | 岳新丽, 湛润生, 牛雅玉, 等. NaCl胁迫对黄花菜种子萌发和幼苗生长的影响[J]. 中国农学通报, 2023, 39(16): 35-40. |
[36] | 许耀照, 曾秀存, 王振朝, 等. NaCl胁迫对冬油菜种子萌发和生理特性的影响[J]. 浙江农业学报, 2023, 35(3): 499-508. |
[37] | JU L, JING Y X, SHI P T, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis[J]. New Phytologist, 2019, 223(1): 246-260. |
[38] | LU K X, GUO Z Y, DI S Y, et al. OsMFT1 inhibits seed germination by modulating abscisic acid signaling and gibberellin biosynthesis under salt stress in rice[J]. Plant and Cell Physiology, 2023, 64(6): 674-685. |
[39] | CHEN L, LU B, LIU L T, et al. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.)[J]. Plant Physiology and Biochemistry, 2021, 162: 506-516. |
[40] | ZHAO Y, DONG W, ZHANG N B, et al. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling[J]. Plant Physiology, 2014, 164(2): 1068-1076. |
[41] | CHEN R, JIANG H L, LI L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24(7): 2898-2916. |
[42] | ELFVING N, DAVOINE C, BENLLOCH R, et al. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8245-8250. |
[43] | ZHU M, LIU Y, CAI P K, et al. Jasmonic acid pretreatment improves salt tolerance of wheat by regulating hormones biosynthesis and antioxidant capacity[J]. Frontiers in Plant Science, 2022, 13: 968477. |
[44] | SONG R F, LI T T, LIU W C. Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression[J]. Frontiers in Plant Science, 2021, 12: 730228. |
[45] | QIN H, WANG J, CHEN X B, et al. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress[J]. New Phytologist, 2019, 223(2): 798-813. |
[46] | CHEN M, LV S L, MENG Y J. Epigenetic performers in plants[J]. Development, Growth & Differentiation, 2010, 52(6): 555-566. |
[47] | 张杨景晖, 常沛瑶, 杨紫淑, 等. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[48] | ZHANG W X, WANG N, YANG J T, et al. The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean[J]. Plant Science, 2020, 291: 110326. |
[49] | KUMAR S, BEENA A S, AWANA M, et al. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes[J]. DNA and Cell Biology, 2017, 36(4): 283-294. |
[50] | RAJKUMAR M S, SHANKAR R, GARG R, et al. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars[J]. Genomics, 2020, 112(5): 3537-3548. |
[51] | CHEN X Y, CHEN G L, GUO S R, et al. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato[J]. Plant Science, 2023, 335: 111808. |
[52] | LI Y Q, GUO D J. Transcriptome and DNA methylome analysis of two contrasting rice genotypes under salt stress during germination[J]. International Journal of Molecular Sciences, 2023, 24(4): 3978. |
[53] | 杨涛, 马小倩, 张全, 等. 组蛋白修饰在水稻中的研究进展[J]. 中国农业科技导报, 2022, 24(4): 11-20. |
[54] | TILAK P, KOTNIK F, NÉE G, et al. Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves[J]. The Plant Journal, 2023, 115(1): 275-292. |
[55] | YUNG W S, WANG Q W, HUANG M K, et al. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress[J]. The Plant Journal, 2022, 109(6): 1575-1590. |
[56] | ZHAO J H, ZHANG W, DA SILVA J A T, et al. Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density[J]. Planta, 2021, 254(4): 79. |
[57] | 王静宇, 陈晓慧, 赖钟雄. 植物表观遗传修饰的分子机制及其生物学功能[J]. 热带作物学报, 2020, 41(10): 2099-2112. |
[58] | YANG R, HONG Y C, REN Z Z, et al. A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 900. |
[59] | 彭江涛, 候新坡, 兰涛, 等. 水稻苗期耐盐性基因SST分子标记的筛选与应用[J]. 福建农林大学学报(自然科学版), 2017, 46(2): 166-171. |
[60] | 宋楠, 陈家婷, 郭慧娟, 等. 57份小麦微核心种质苗期耐盐鉴定及分子标记评价[J]. 山西农业科学, 2022, 50(9): 1209-1214. |
[61] | 陈奕博, 杨万明, 岳爱琴, 等. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[62] | ZHANG Q, LIU Y Q, JIANG Y L, et al. OsASR6 enhances salt stress tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(16): 9340. |
[63] | BI C X, YU Y H, DONG C H, et al. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat[J]. Plant Biotechnology Journal, 2021, 19(2): 209-211. |
[64] | SALINAS-CORNEJO J, MADRID-ESPINOZA J, VERDUGO I, et al. A SNARE-like protein from Solanum lycopersicum increases salt tolerance by modulating vesicular trafficking in tomato[J]. Frontiers in Plant Science, 2023, 14: 1212806. |
[65] | 吴运荣, 林宏伟, 莫肖蓉. 植物抗盐分子机制及作物遗传改良耐盐性的研究进展[J]. 植物生理学报, 2014, 50(11): 1621-1629. |
[66] | NAN N, WANG J, SHI Y J, et al. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content[J]. Plant Biotechnology Journal, 2020, 18(1): 172-184. |
[67] | WANG J, QIN H, ZHOU S R, et al. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice[J]. The Plant Cell, 2020, 32(2): 414-428. |
[68] | LUO C K, AKHTAR M, MIN W F, et al. The suppressed expression of a stress responsive gene ‘OsDSR2’ enhances rice tolerance in drought and salt stress[J]. Journal of Plant Physiology, 2023, 282: 153927. |
[69] | WANG T Y, XUN H W, WANG W, et al. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean[J]. Frontiers in Plant Science, 2021, 12: 779598. |
[70] | TRAN M T, DOAN D T H, KIM J, et al. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato[J]. Plant Cell Reports, 2021, 40(6): 999-1011. |
[1] | 高贤义, 岳雅妮, 徐竞成, 刘曙东, 林婷薇, 漆慧娟, 王颖, 王卫. 不同浓度NaCl处理对樱桃番茄幼苗生长的影响[J]. 浙江农业科学, 2025, 66(2): 344-348. |
[2] | 肖晨星, 高璐阳, 马志明. 植物对低磷胁迫的适应机制[J]. 浙江农业科学, 2024, 65(9): 2206-2213. |
[3] | 王彦钦, 李武阳, 孟宪刚, 罗光宏. 衣藻对盐胁迫下小麦幼苗生长和生理指标的影响研究[J]. 浙江农业科学, 2024, 65(3): 497-504. |
[4] | 沈波, 王豪, 焦猛, 陆云峰. 不同日本杜鹃品种盐胁迫下生理响应及评价研究[J]. 浙江农业科学, 2023, 64(5): 1264-1269. |
[5] | 段敏, 谢留杰, 潘晓飚, 黄善军, 曾孝元. 北方早粳稻品种萌发期和幼苗期的耐盐性评价[J]. 浙江农业科学, 2023, 64(4): 794-797. |
[6] | 丁久玲, 史俊, 高大响, 郑凯, 席刚俊. 盐胁迫对铁皮石斛幼苗生长特性的影响[J]. 浙江农业科学, 2023, 64(11): 2638-2641. |
[7] | 廖珍凤, 王剑, 宋西娇, 陈光, 沈梦梦, 苗瑞祥, 徐盛春. 盐胁迫对大豆种子萌发过程中子叶超微结构的影响[J]. 浙江农业科学, 2022, 63(6): 1250-1256. |
[8] | 吴承东, 沈明晨, 陈镭, 李春阳, 张明. 盐胁迫对白首乌种子萌发特性的影响[J]. 浙江农业科学, 2022, 63(6): 1262-1265. |
[9] | 郑春芳, 范翠枝, 郑青松, 刘伟成, 陈继浓, 丁文勇, 李鹏全. 外施2,4-表油菜素内酯对盐胁迫下番茄幼苗生长及生理特性的影响[J]. 浙江农业科学, 2022, 63(5): 991-995. |
[10] | 章建红, 沈登锋, 洪春桃, 焦云, 魏斌, 潘存德. 盐胁迫对薄壳山核桃幼苗光合作用及叶绿体超微结构的影响[J]. 浙江农业科学, 2022, 63(11): 2569-2574. |
[11] | 朱家骝, 范国灿. 不同生育期盐胁迫对水稻产量性状的影响[J]. 浙江农业科学, 2021, 62(7): 1299-1300. |
[12] | 柏华美, 黄梓轩, 郭敏, 鲍聆然, 沈波. OsWD40过表达水稻在盐胁迫下的生理响应[J]. 浙江农业科学, 2021, 62(6): 1076-1079. |
[13] | 熊韬, 闫淼, 王江涛, 胡国智. 盐碱胁迫对甜瓜幼苗渗透调节物质的影响[J]. 浙江农业科学, 2021, 62(12): 2430-2434. |
[14] | 顾寅钰, 衣葵花, 梁晓艳, 李萌, 许润海, 王向誉, 陈传杰. 不同盐胁迫条件对芹菜根部土壤的影响[J]. 浙江农业科学, 2020, 61(9): 1801-1803. |
[15] | 王佳淇, 韦晓桐, 何莹钰, 汤佳雯, 王仕琪, 朱友银, 汤腾跃, 廖芳蕾. LED补光系统对设施园艺作物的影响[J]. 浙江农业科学, 2020, 61(5): 950-954. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||