[1] |
张伯平. 改革开放以来我国稻田种植制度的变革[J]. 耕作与栽培, 2002(4): 4-6, 55.
|
[2] |
赵正洪, 戴力, 黄见良, 等. 长江中游稻区水稻产业发展现状、问题与建议[J]. 中国水稻科学, 2019, 33(6): 553-564.
|
[3] |
DE OLIVEIRA ZIMMERMANN M J. Breeding for yield, in mixtures of common beans (Phaseolus vulgaris L.) and maize (Zea mays L.)[J]. Euphytica, 1996, 92(1): 129-134.
|
[4] |
孙红, 孙明明, 吕世翔, 等. 水旱轮作对土壤和水稻的影响[J]. 黑龙江农业科学, 2019(10): 141-143.
|
[5] |
刘习清, 刘振之, 梁建红. 湘中地区稻油轮作应用现状及发展建议[J]. 现代农业科技, 2021(12): 49-51.
|
[6] |
范明生, 江荣风, 张福锁, 等. 水旱轮作系统作物养分管理策略[J]. 应用生态学报, 2008, 19(2): 424-432.
|
[7] |
陈晓娟, 吴小红, 刘守龙, 等. 不同耕地利用方式下土壤微生物活性及群落结构特性分析: 基于PLFA和MicroRespTM方法[J]. 环境科学, 2013, 34(6): 2375-2382.
|
[8] |
MURUGAN R, KUMAR S. Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil[J]. Biology and Fertility of Soils, 2013, 49(7): 847-856.
|
[9] |
徐宁, 黄国勤. 稻田轮作对水稻病、虫、草害的影响[J]. 生物灾害科学, 2013, 36(1): 26-30.
|
[10] |
蔡尤俊, 沈嘉伟, 刁石新, 等. 稻菜轮作对稻田褐飞虱和蜘蛛数量的影响[J]. 环境昆虫学报, 2015, 37(3): 548-550.
|
[11] |
李诚永, 夏英, 李韵, 等. “稻-豆-油” 三熟制水旱轮作绿色高效栽培技术[J]. 浙江农业科学, 2024, 65(4): 812-816.
|
[12] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
[13] |
HUANG Q N, AN H, YANG Y J, et al. Effects of Mn-Cd antagonistic interaction on Cd accumulation and major agronomic traits in rice genotypes by different Mn forms[J]. Plant Growth Regulation, 2017, 82(2): 317-331.
|
[14] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
|
[15] |
卢胜, 张振华. 长期稻油轮作改良土壤结构提高水稻产量[J]. 土壤通报, 2018, 49(2): 409-414.
|
[16] |
曾希柏, 孙楠, 高菊生, 等. 双季稻田改制对土壤剖面构型及性质的影响[J]. 应用生态学报, 2008, 19(5): 1033-1039.
|
[17] |
BARAK P, JOBE B O, KRUEGER A R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin[J]. Plant and Soil, 1997, 197(1): 61-69.
|
[18] |
苏婷, 韩海亮, 赵福成, 等. 水田、旱地与水旱轮作种植方式土壤微生物群落的差异[J]. 浙江农业科学, 2016, 57(2): 261-262.
|
[19] |
张立成, 邵继海, 林毅青, 等. 稻-稻-油菜轮作对土壤微生物活性和多样性的影响[J]. 生态环境学报, 2017, 26(2): 204-210.
|
[20] |
KIRSCHBAUM M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J]. Biogeochemistry, 2000, 48(1): 21-51.
|
[21] |
TURNER B L, HAYGARTH P M. Changes in bicarbonate-extractable inorganic and organic phosphorus by drying pasture soils[J]. Soil Science Society of America Journal, 2003, 67(1): 344-350.
|
[22] |
郭继斌, 王莉, 韩娇, 等. 联合浸提法测定土壤有效态镉[J]. 江苏农业科学, 2016, 44(3): 369-372.
|
[23] |
HALIM M, CONTE P, PICCOLO A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances[J]. Chemosphere, 2003, 52(1): 265-275.
|
[24] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286.
|
[25] |
SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.
|
[26] |
TAKAHASHI R, ISHIMARU Y, NAKANISHI H, et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11): 1813-1816.
|
[27] |
NAKANISHI, OGAWA, ISHIMARU, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
|
[28] |
RAMESH S A, SHIN R, EIDE D J, et al. Differential metal selectivity and gene expression of two zinc transporters from rice[J]. Plant Physiology, 2003, 133(1): 126-134.
|
[29] |
杨云帆. 水稻降镉过程中镉与微量元素的变化研究[D]. 长沙: 湖南师范大学, 2018.
|
[30] |
曹巧滢, 詹曜玮, 丁尔全, 等. 分次施用碱性肥料对土壤pH及土壤镉有效性的影响[J]. 农业环境科学学报, 2022, 41(7): 1483-1489.
|
[31] |
YIN B K, ZHOU L Q, YIN B, et al. Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil[J]. Journal of Soils and Sediments, 2016, 16(2): 537-546.
|
[32] |
薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887.
|