[1] |
孙达, 汪华, 孔燕, 等. 水稻秸秆生物炭和猪粪生物炭对镉的吸附性能[J]. 浙江农业科学, 2020, 61(2): 308-313.
|
[2] |
王红霞, 张治伟, 徐品, 等. 农作物废弃物生物炭制备及改性的研究进展[J]. 广东化工, 2024, 51(7): 95-97.
|
[3] |
CHAN Y C, SIMPSON R W, MCTAINSH G H, et al. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques[J]. Atmospheric Environment, 1999, 33(19): 3237-3250.
|
[4] |
LI Y, XING B, DING Y, et al. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2020, 312: 123614.
|
[5] |
KAMALI M, SWEYGERS N, AL-SALEM S, et al. Biochar for soil applications-sustainability aspects, challenges and future prospects[J]. Chemical Engineering Journal, 2022, 428: 131189.
|
[6] |
CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science&Technology, 2004, 38(17): 4649-4655.
|
[7] |
王梧镇, 李若晨, 谢奇玕, 等. 不同改良剂对Cd污染土壤及水稻Cd吸收转运的影响[J]. 浙江农业科学, 2023, 64(6): 1446-1450.
|
[8] |
ACEMIOĞ LU B. Removal of a reactive dye using NaOH-activated biochar prepared from peanut shell by pyrolysis process[J]. International Journal of Coal Preparation and Utilization, 2022, 42(3): 671-693.
|
[9] |
罗庆, 寇力月, 魏忠平, 等. 不同原料来源及热解温度下林业废弃物生物炭理化性质差异研究[J]. 沈阳农业大学学报, 2024, 55(3): 285-297.
|
[10] |
吴诗雪, 王欣, 陈灿, 等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析[J]. 环境科学学报, 2015, 35(12): 4021-4032.
|
[11] |
徐雪斌, 丁竹红, 胡忻, 等. 花生壳基和木屑基生物炭对离子型染料和Pb(Ⅱ)的吸附性能研究[J]. 环境污染与防治, 2017, 39(9): 929-935.
|
[12] |
魏样, 李日升, 卢楠, 等. 三种秸秆生物炭对污染土壤中汞、砷钝化的研究[J]. 地球环境学报, 2025, 16(1):99-106.
|
[13] |
黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性[J]. 环境化学, 2020, 39(4): 1116-1128.
|
[14] |
李丹阳. 几种生物炭及改性材料对水中镉离子的吸附性能及机理研究[D]. 长沙: 湖南农业大学, 2019.
|
[15] |
BERGER C M. Biochar and activated carbon filters for greywater treatment: comparison of organic matter and nutrients removal[D]. Uppsala: Swedish University of Agricultural Sciences, 2012.
|
[16] |
兰天, 张辉, 刘源, 等. 玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J]. 江苏农业学报, 2016, 32(2): 368-375.
|
[17] |
Liu B, Chen T, Wang B, et al. Enhanced removal of Cd2+ from water by AHP-pretreated biochar: adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2022, 438: 129467.
|
[18] |
ZHAO C, GE L C, WANG R K, et al. Effects of cellulose addition on the physicochemical properties, pore structure and iodine adsorption of lignin-based biochar[J]. Fuel, 2023, 352: 129061.
|
[19] |
张兴梅, 王鑫宇, 李思锦. 落叶松不同器官化学组分及其生物炭理化性质研究[J]. 林业与生态科学, 2023, 38(4): 391-398.
|
[20] |
MENG Q, WU S, SHEN C. Polyethylenimine-grafted-corncobas a muljpgunctional biomaterial for removing heavy metal ions and killing bacteria from water[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17476-17482.
|
[21] |
LI S K, WEN Y J, WANG Y F, et al. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil[J]. Journal of hazardous materials, 2023, 132740.
|
[22] |
张晓凤, 马珮瑶, 邓志华, 等. 农林基质生物炭联合香根草对铜镉铅复合污染土壤的修复研究[J]. 西南林业大学学报(自然科学), 2024, 44(6): 1-9.
|
[23] |
DANISH M, AHMAD T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable & Sustainable Energy Reviews, 2018, 87: 1-21.
|
[24] |
COLE J E, ZANDVAKILI R O, XING B S, et al. Dataset on the effect of hardwood biochar on soil gravimetric moisture content and nitrate dynamics at different soil depths with FTIR analysis of fresh and aged biochar[J]. Data in Brief, 2019, 25.
|
[25] |
PASUMARTHI R, SAWARGAONKAR G, KALE S, et al. Innovative bio-pyrolytic method for efficient biochar production from maize and pigeonpea stalks and their characterization[J]. Journal of Cleaner Production, 2024, 448.
|
[26] |
LIU J, YANG X Y, LIU H T, et al. Mixed biochar derived by the co-pyrolysis of shrimp shell with corn straw: co-pyrolysis characteristics and its adsorption capability[J]. Chemosphere, 2021, 131116.
|
[27] |
吴晓梅, 叶美锋, 吴飞龙, 等. 农林废弃物生物炭的制备及其吸附性能[J]. 生物质化学工程, 2023, 57(4): 27-33.
|
[28] |
韩鲁佳, 李彦霏, 刘贤, 等. 生物炭吸附水体中重金属机理与工艺研究进展[J]. 农业机械学报, 2017(11): 6-16.
|
[29] |
MOHAN D, RAJPUT S, SINGH V K, et al. Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent[J]. Journal of Hazardous Materials, 2011, 188(1-3): 319-333.
|