[1] |
CHEN Q, HE A B, WANG W Q, et al. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China[J]. Field Crops Research, 2018, 223: 164-170.
|
[2] |
PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3-8.
|
[3] |
张桃林. 守护耕地土壤健康支撑农业高质量发展[J]. 土壤, 2021, 53(1): 1-4.
|
[4] |
赵永存, 徐胜祥, 王美艳, 等. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 2018, 33(2): 191-197.
|
[5] |
SONG G H, LI L Q, PAN G X, et al. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry, 2005, 74(1): 47-62.
|
[6] |
QIN Z C, HUANG Y, ZHUANG Q L. Soil organic carbon sequestration potential of cropland in China[J]. Global Biogeochemical Cycles, 2013, 27(3): 711-722.
|
[7] |
GUO Y Y, GONG P, AMUNDSON R, et al. Analysis of factors controlling soil carbon in the conterminous United States[J]. Soil Science Society of America Journal, 2006, 70(2): 601-612.
|
[8] |
SMITH P, POWLSON D S, SMITH J U, et al. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture[J]. Global Change Biology, 2000, 6(5): 525-539.
|
[9] |
赵秀玲, 任永祥, 赵鑫, 等. 华北平原秸秆还田生态效应研究进展[J]. 作物杂志, 2017(1): 1-7.
|
[10] |
秦凯. 秸秆机械化粉碎还田对地下害虫的影响[J]. 农家参谋(种业大观), 2011(9): 24.
|
[11] |
崔正果, 李秋祝, 张玉斌, 等. 玉米秸秆全量粉碎耕翻还田条件下播种深度与镇压强度对玉米出苗率的影响[J]. 东北农业科学, 2018(6): 16-19.
|
[12] |
袁雪涛, 谷海红, 李富平, 等. 施用玉米秸秆对铅锌尾矿速效养分和重金属活性的影响[J]. 环境科学与技术, 2014, 37(7): 36-40.
|
[13] |
ZHANG A, BIAN R, PAN G, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153-160.
|
[14] |
夏文斌, 张旭辉, 刘铭龙, 等. 麦秆还田方式对旱地土壤综合温室效应的影响[J]. 土壤, 2014, 46(6): 1010-1016.
|
[15] |
潘根兴, 张阿凤, 邹建文, 等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨[J]. 生态与农村环境学报, 2010, 26(4): 394-400.
|
[16] |
史思伟, 娄翼来, 杜章留, 等. 生物炭的10年土壤培肥效应[J]. 中国土壤与肥料, 2018(6): 16-22.
|
[17] |
ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469-475.
|
[18] |
XU W H, WHITMAN W B, GUNDALE M J, et al. Functional response of the soil microbial community to biochar applications[J]. GCB Bioenergy, 2021, 13(1): 269-281.
|
[19] |
陈红霞, 杜章留, 郭伟, 等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11): 2930-2934.
|
[20] |
LIU X, MAO P N, LI L H, et al. Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis[J]. Science of the Total Environment, 2019, 656: 969-976.
|
[21] |
LEHMANN J. A handful of carbon[J]. Nature, 2007, 447(7141): 143-144.
|
[22] |
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems:a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427.
|
[23] |
CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228.
|
[24] |
SCHULZ H, GLASER B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3): 410-422.
|