浙江农业科学 ›› 2025, Vol. 66 ›› Issue (9): 2126-2136.DOI: 10.16178/j.issn.0528-9017.20250226

• 药用植物 • 上一篇    下一篇

基于近红外技术的覆盆子药材品质分析

汪传宝1(), 胡淳莉2, 占建勇3, 李海申1, 姜玲4, 郑平汉5, 王志安1, 孙健1,6,*()   

  1. 1.浙江省中药研究所有限公司,浙江 杭州 310023
    2.淳安县食品药品检测中心,浙江 淳安 311700
    3.浙江省淳安县农业农村局,浙江 淳安 311700
    4.淳安县农业农村发展服务中心,浙江 淳安 311700
    5.淳安县临岐镇中药材办公室,浙江 淳安 311703
    6.道地药材品质保障与资源持续利用全国重点实验室, 北京 100700
  • 收稿日期:2025-03-25 出版日期:2025-09-11 发布日期:2025-10-14
  • 通讯作者: 孙健,男,山东莱州人,高级工程师,博士,主要从事中药材抗性育种和生态栽培,E-mail: 21116025@zju.edu.cn
  • 作者简介:汪传宝,男,安徽黄山人,硕士,主要从事中药资源品质评价,E-mail: 1712740643@qq.com
  • 基金资助:
    中央本级重大增减支项目“名贵中药资源可持续利用能力建设项目”(2060302-2202-09);浙江省农业(中药材新品种选育)新品种选育重大科技专项(2021C02074);浙江省科技计划(省属科研院所扶持专项)

Quality analysis of Rubus chingii Hu. based on near-infrared technology

WANG Chuanbao1(), HU Chunli2, ZHAN Jianyong3, LI Haishen1, JIANG Ling4, ZHENG Pinghan5, WANG Zhian1, SUN Jian1,6,*()   

  1. 1. Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, Zhejiang
    2. Chun 'an County Food and Drug Testing Center, Chun'an 311700, Zhejiang
    3. Zhejiang Chun'an County Agricultural and Rural Bureau, Chun'an 311700, Zhejiang
    4. Chun'an County Agricultural and Rural Development Service Center, Chun'an 311700, Zhejiang
    5. Chun'an County Linqi Town Chinese Herbal Medicine Office, Chun'an 311703, Zhejiang
    6. State Key Laboratory for Quality Ensurance and Sustainable Use of Genuine Herbs, Beijing 100700
  • Received:2025-03-25 Online:2025-09-11 Published:2025-10-14

摘要:

为构建基于近红外光谱数据的定量预测模型,实现对覆盆子中鞣花酸和山柰酚-3-O-芸香糖苷含量的快速预测,本研究收集了不同来源的覆盆子样本,采集其近红外光谱(NIR),通过高效液相(HPLC)检测其鞣花酸和山柰酚-3-O-芸香糖苷的含量,运用MATLAB R2020b软件对光谱数据进行预处理,运用竞争自适应重加权抽样CARS筛选特征波长,建立偏最小二乘(PLS)和随机森林(RF)模型筛选出最佳预处理方法,进而筛选出最佳的预测模型。结果表明,应用SNV+FD+CARS+PLS模型可获得鞣花酸的最优预测结果,定量模型测试集的相关系数($R_{\mathrm{p}}^{2}$)为0.903 8,应用SG+FD+CARS+PLS模型可获得山柰酚-3-O-芸香糖苷的最优预测结果,$R_{\mathrm{p}}^{2}$为0.758 6。经归一化和一阶导数组合处理的近红外数据在正交偏最小二乘判别分析(OPLS-DA)模型中能够判别区分覆盆子合格品,累积方差值R2Y为0.728,预测率Q2为0.681。本研究结果表明,应用近红外光谱技术可以快速预测覆盆子中鞣花酸和山柰酚-3-O-芸香糖苷的含量,对覆盆子样品进行品质初步判别。

关键词: 覆盆子, 鞣花酸, 山柰酚-3-O-芸香糖苷, 近红外光谱

Abstract:

To establish a quantitative prediction model based on near-infrared spectroscopy data, and to realize the rapid prediction of ellagic acid and kaempferol-3-O-rutinoside content in Rubus chingii Hu., the samples from different sources were collected, the near-infrared spectroscopy was collected, and the contents of ellagic acid and kaempferol-3-O-rutinoside were detected by HPLC. Spectral data were preprocessed by MATLAB R2020b software. The competitive adaptive reweighted sampled CARS were used to screen characteristic wavelengths, and partial least squares (PLS) and random forest (RF) models were established to screen the best pretreatment methods, and then the best prediction models were selected. Results showed that the optimal prediction results of ellagic acid were obtained by SNV+FD+CARS+PLS model, and the correlation coefficient ($R_{\mathrm{p}}^{2}$) of the quantitative model test set was 0.903 8. The optimal prediction results of kaempferol-3-O-rutinoside were obtained by SG+FD+CARS+PLS model, and the $R_{\mathrm{p}}^{2}$ of the quantitative model test set was 0.758 6. The NIR data treated by the combination of normalization and first derivative can distinguish Rubus chingii Hu. qualified products in OPLS-DA model, the cumulative variance value R2Y was 0.728, and the prediction rate Q2 was 0.681. The results of this study indicated that the content of ellagic acid and kaempferol-3-O-rutinoside in Rubus chingii Hu. can be quickly predicted by NIR technique, and the quality of raspberry samples can be preliminarily judged.

Key words: Rubus chingii Hu., ellagic acid, kaempferol-3-O-rutinoside, near infrared spectrum

中图分类号: