浙江农业科学 ›› 2025, Vol. 66 ›› Issue (9): 2126-2136.DOI: 10.16178/j.issn.0528-9017.20250226
汪传宝1(), 胡淳莉2, 占建勇3, 李海申1, 姜玲4, 郑平汉5, 王志安1, 孙健1,6,*(
)
收稿日期:
2025-03-25
出版日期:
2025-09-11
发布日期:
2025-10-14
通讯作者:
孙健,男,山东莱州人,高级工程师,博士,主要从事中药材抗性育种和生态栽培,E-mail: 21116025@zju.edu.cn。
作者简介:
汪传宝,男,安徽黄山人,硕士,主要从事中药资源品质评价,E-mail: 1712740643@qq.com。
基金资助:
WANG Chuanbao1(), HU Chunli2, ZHAN Jianyong3, LI Haishen1, JIANG Ling4, ZHENG Pinghan5, WANG Zhian1, SUN Jian1,6,*(
)
Received:
2025-03-25
Online:
2025-09-11
Published:
2025-10-14
摘要:
为构建基于近红外光谱数据的定量预测模型,实现对覆盆子中鞣花酸和山柰酚-3-O-芸香糖苷含量的快速预测,本研究收集了不同来源的覆盆子样本,采集其近红外光谱(NIR),通过高效液相(HPLC)检测其鞣花酸和山柰酚-3-O-芸香糖苷的含量,运用MATLAB R2020b软件对光谱数据进行预处理,运用竞争自适应重加权抽样CARS筛选特征波长,建立偏最小二乘(PLS)和随机森林(RF)模型筛选出最佳预处理方法,进而筛选出最佳的预测模型。结果表明,应用SNV+FD+CARS+PLS模型可获得鞣花酸的最优预测结果,定量模型测试集的相关系数($R_{\mathrm{p}}^{2}$)为0.903 8,应用SG+FD+CARS+PLS模型可获得山柰酚-3-O-芸香糖苷的最优预测结果,$R_{\mathrm{p}}^{2}$为0.758 6。经归一化和一阶导数组合处理的近红外数据在正交偏最小二乘判别分析(OPLS-DA)模型中能够判别区分覆盆子合格品,累积方差值R2Y为0.728,预测率Q2为0.681。本研究结果表明,应用近红外光谱技术可以快速预测覆盆子中鞣花酸和山柰酚-3-O-芸香糖苷的含量,对覆盆子样品进行品质初步判别。
中图分类号:
汪传宝, 胡淳莉, 占建勇, 李海申, 姜玲, 郑平汉, 王志安, 孙健. 基于近红外技术的覆盆子药材品质分析[J]. 浙江农业科学, 2025, 66(9): 2126-2136.
WANG Chuanbao, HU Chunli, ZHAN Jianyong, LI Haishen, JIANG Ling, ZHENG Pinghan, WANG Zhian, SUN Jian. Quality analysis of Rubus chingii Hu. based on near-infrared technology[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(9): 2126-2136.
图1 覆盆子样品中鞣花酸和山柰酚-3-O-芸香糖苷含量分布 a,鞣花酸和山柰酚-3-O-芸香糖苷的含量分布散点图;b,鞣花酸含量频率分布直方图;c,山柰酚-3-O-芸香糖苷含量频率分布直方图。
Fig.1 Content distribution of ellagic acid and kaempferol-3-O-rutinoside in Rubus chingii Hu.
类别 | 样本 | 样本数量/个 | 最大值/% | 最小值/% | 平均值/% | 标准偏差 |
---|---|---|---|---|---|---|
鞣花酸 | 整体 | 80 | 0.516 0 | 0.047 0 | 0.177 9 | 0.101 8 |
训练集 | 56 | 0.516 0 | 0.052 3 | 0.177 7 | 0.104 0 | |
测试集 | 24 | 0.426 3 | 0.047 0 | 0.178 2 | 0.098 7 | |
山柰酚-3-O-芸香糖苷 | 整体 | 80 | 0.203 1 | 0.022 3 | 0.076 9 | 0.037 1 |
训练集 | 56 | 0.203 1 | 0.035 8 | 0.089 6 | 0.037 1 | |
测试集 | 24 | 0.064 1 | 0.022 3 | 0.047 2 | 0.011 3 |
表1 覆盆子样本组分配
Table 1 Allocation of Rubus chingii Hu. sample groups
类别 | 样本 | 样本数量/个 | 最大值/% | 最小值/% | 平均值/% | 标准偏差 |
---|---|---|---|---|---|---|
鞣花酸 | 整体 | 80 | 0.516 0 | 0.047 0 | 0.177 9 | 0.101 8 |
训练集 | 56 | 0.516 0 | 0.052 3 | 0.177 7 | 0.104 0 | |
测试集 | 24 | 0.426 3 | 0.047 0 | 0.178 2 | 0.098 7 | |
山柰酚-3-O-芸香糖苷 | 整体 | 80 | 0.203 1 | 0.022 3 | 0.076 9 | 0.037 1 |
训练集 | 56 | 0.203 1 | 0.035 8 | 0.089 6 | 0.037 1 | |
测试集 | 24 | 0.064 1 | 0.022 3 | 0.047 2 | 0.011 3 |
图3 近红外不同预处理方法的OPLS-DA分布图 a表示原始数据,b表示NDH处理,c表示SNV处理,d表示MSC处理,e表示FD处理,f表示NDH+FD处理;A代表全合格品,B代表鞣花酸合格品,C代表山柰酚-3-O-芸香糖苷合格品。
Fig.3 OPLS-DA distribution maps of different near-infrared preprocessing methods
模型 | 预处理方法 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | ||||
RF | Raw | 0.498 9 | 0.070 6 | 1.425 4 | 0.116 6 | 0.096 5 | 1.086 8 |
NDH | 0.645 0 | 0.063 6 | 1.693 6 | 0.413 4 | 0.064 5 | 1.333 7 | |
NDH+FD | 0.805 5 | 0.049 2 | 2.288 0 | 0.577 3 | 0.042 5 | 1.571 2 | |
MSC | 0.777 6 | 0.047 6 | 2.139 8 | 0.352 1 | 0.074 5 | 1.269 1 | |
MSC+FD | 0.635 9 | 0.057 2 | 1.672 2 | 0.599 5 | 0.069 5 | 1.614 1 | |
SG | 0.500 8 | 0.073 7 | 1.428 1 | 0.124 3 | 0.086 3 | 1.091 6 | |
SG+FD | 0.754 9 | 0.050 9 | 2.038 0 | 0.283 4 | 0.081 9 | 1.206 7 | |
SNV | 0.706 2 | 0.052 8 | 1.861 7 | 0.317 1 | 0.086 8 | 1.236 1 | |
SNV+FD | 0.781 6 | 0.047 2 | 2.159 2 | 0.413 4 | 0.076 7 | 1.333 8 | |
FD | 0.798 2 | 0.043 6 | 2.246 0 | 0.418 8 | 0.084 1 | 1.339 9 | |
SD | 0.814 5 | 0.043 7 | 2.342 9 | 0.201 3 | 0.089 2 | 1.143 0 | |
PLS | Raw | 0.587 9 | 0.066 6 | 1.571 9 | 0.565 3 | 0.059 8 | 1.549 4 |
NDH | 0.627 3 | 0.063 0 | 1.652 9 | 0.400 4 | 0.074 4 | 1.319 2 | |
NDH+FD | 0.889 9 | 0.030 6 | 3.041 1 | 0.662 3 | 0.069 3 | 1.757 8 | |
MSC | 0.680 0 | 0.045 8 | 1.783 8 | 0.536 1 | 0.090 8 | 1.499 8 | |
MSC+FD | 0.929 4 | 0.024 7 | 3.797 9 | 0.585 2 | 0.075 7 | 1.586 0 | |
SG | 0.555 0 | 0.065 8 | 1.512 7 | 0.403 1 | 0.082 4 | 1.314 7 | |
SG+FD | 0.744 6 | 0.052 5 | 1.996 8 | 0.259 3 | 0.081 2 | 1.186 9 | |
SNV | 0.715 4 | 0.052 0 | 1.891 6 | 0.396 9 | 0.083 5 | 1.315 3 | |
SNV+FD | 0.899 7 | 0.030 9 | 3.186 6 | 0.735 9 | 0.055 0 | 1.987 8 | |
FD | 0.905 0 | 0.034 2 | 3.274 3 | 0.302 6 | 0.051 4 | 1.223 2 | |
SD | 0.902 9 | 0.031 7 | 3.237 9 | 0.520 6 | 0.067 6 | 1.475 3 |
表2 不同数据预处理方法下鞣花酸的预测结果
Table 2 Prediction results of ellagic acid under different data preprocessing methods
模型 | 预处理方法 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | ||||
RF | Raw | 0.498 9 | 0.070 6 | 1.425 4 | 0.116 6 | 0.096 5 | 1.086 8 |
NDH | 0.645 0 | 0.063 6 | 1.693 6 | 0.413 4 | 0.064 5 | 1.333 7 | |
NDH+FD | 0.805 5 | 0.049 2 | 2.288 0 | 0.577 3 | 0.042 5 | 1.571 2 | |
MSC | 0.777 6 | 0.047 6 | 2.139 8 | 0.352 1 | 0.074 5 | 1.269 1 | |
MSC+FD | 0.635 9 | 0.057 2 | 1.672 2 | 0.599 5 | 0.069 5 | 1.614 1 | |
SG | 0.500 8 | 0.073 7 | 1.428 1 | 0.124 3 | 0.086 3 | 1.091 6 | |
SG+FD | 0.754 9 | 0.050 9 | 2.038 0 | 0.283 4 | 0.081 9 | 1.206 7 | |
SNV | 0.706 2 | 0.052 8 | 1.861 7 | 0.317 1 | 0.086 8 | 1.236 1 | |
SNV+FD | 0.781 6 | 0.047 2 | 2.159 2 | 0.413 4 | 0.076 7 | 1.333 8 | |
FD | 0.798 2 | 0.043 6 | 2.246 0 | 0.418 8 | 0.084 1 | 1.339 9 | |
SD | 0.814 5 | 0.043 7 | 2.342 9 | 0.201 3 | 0.089 2 | 1.143 0 | |
PLS | Raw | 0.587 9 | 0.066 6 | 1.571 9 | 0.565 3 | 0.059 8 | 1.549 4 |
NDH | 0.627 3 | 0.063 0 | 1.652 9 | 0.400 4 | 0.074 4 | 1.319 2 | |
NDH+FD | 0.889 9 | 0.030 6 | 3.041 1 | 0.662 3 | 0.069 3 | 1.757 8 | |
MSC | 0.680 0 | 0.045 8 | 1.783 8 | 0.536 1 | 0.090 8 | 1.499 8 | |
MSC+FD | 0.929 4 | 0.024 7 | 3.797 9 | 0.585 2 | 0.075 7 | 1.586 0 | |
SG | 0.555 0 | 0.065 8 | 1.512 7 | 0.403 1 | 0.082 4 | 1.314 7 | |
SG+FD | 0.744 6 | 0.052 5 | 1.996 8 | 0.259 3 | 0.081 2 | 1.186 9 | |
SNV | 0.715 4 | 0.052 0 | 1.891 6 | 0.396 9 | 0.083 5 | 1.315 3 | |
SNV+FD | 0.899 7 | 0.030 9 | 3.186 6 | 0.735 9 | 0.055 0 | 1.987 8 | |
FD | 0.905 0 | 0.034 2 | 3.274 3 | 0.302 6 | 0.051 4 | 1.223 2 | |
SD | 0.902 9 | 0.031 7 | 3.237 9 | 0.520 6 | 0.067 6 | 1.475 3 |
模型 | 预处理方法 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | ||||
RF | Raw | 0.559 3 | 0.023 1 | 1.520 0 | 0.142 4 | 0.037 0 | 1.103 1 |
NDH | 0.711 4 | 0.019 4 | 1.878 3 | 0.252 4 | 0.033 5 | 1.181 4 | |
NDH+FD | 0.737 2 | 0.019 7 | 1.968 2 | 0.527 7 | 0.022 6 | 1.486 4 | |
MSC | 0.705 8 | 0.020 3 | 1.860 5 | 0.258 8 | 0.030 5 | 1.186 5 | |
MSC+FD | 0.747 2 | 0.018 9 | 2.007 0 | 0.267 7 | 0.030 4 | 1.193 7 | |
SG | 0.676 1 | 0.017 6 | 1.773 1 | 0.195 1 | 0.041 2 | 1.138 6 | |
SG+FD | 0.761 1 | 0.017 3 | 2.064 5 | 0.466 8 | 0.029 4 | 1.398 9 | |
SNV | 0.676 6 | 0.021 3 | 1.774 3 | 0.203 3 | 0.032 0 | 1.144 4 | |
SNV+FD | 0.720 5 | 0.018 1 | 1.908 5 | 0.443 8 | 0.031 8 | 1.369 8 | |
FD | 0.752 8 | 0.019 7 | 2.029 4 | 0.376 3 | 0.022 2 | 1.293 5 | |
SD | 0.785 1 | 0.015 8 | 2.176 7 | 0.191 1 | 0.038 1 | 1.135 8 | |
PLS | Raw | 0.414 3 | 0.022 9 | 1.318 5 | 0.402 2 | 0.037 8 | 1.321 2 |
NDH | 0.512 5 | 0.024 9 | 1.445 2 | 0.204 4 | 0.034 9 | 1.145 2 | |
NDH+FD | 0.919 7 | 0.009 1 | 3.560 1 | 0.435 5 | 0.033 7 | 1.359 6 | |
MSC | 0.534 5 | 0.027 9 | 1.497 0 | 0.185 1 | 0.022 8 | 1.131 6 | |
MSC+FD | 0.924 8 | 0.010 0 | 3.678 4 | 0.226 3 | 0.033 2 | 1.161 3 | |
SG | 0.413 9 | 0.029 3 | 1.318 0 | 0.216 8 | 0.027 4 | 1.154 3 | |
SG+FD | 0.899 8 | 0.010 4 | 3.187 0 | 0.585 7 | 0.028 0 | 1.587 0 | |
SNV | 0.527 6 | 0.027 9 | 1.468 1 | 0.299 3 | 0.020 8 | 1.220 3 | |
SNV+FD | 0.888 4 | 0.011 4 | 3.021 1 | 0.546 9 | 0.028 7 | 1.517 5 | |
FD | 0.867 3 | 0.012 8 | 2.769 8 | 0.454 2 | 0.030 3 | 1.382 6 | |
SD | 0.871 7 | 0.013 2 | 2.816 6 | 0.475 2 | 0.026 7 | 1.410 1 |
表3 不同数据预处理方法下山柰酚-3-O-芸香糖苷的预测结果
Table 3 Prediction results of kaempferol-3-O-rutinoside under different data preprocessing methods
模型 | 预处理方法 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | ||||
RF | Raw | 0.559 3 | 0.023 1 | 1.520 0 | 0.142 4 | 0.037 0 | 1.103 1 |
NDH | 0.711 4 | 0.019 4 | 1.878 3 | 0.252 4 | 0.033 5 | 1.181 4 | |
NDH+FD | 0.737 2 | 0.019 7 | 1.968 2 | 0.527 7 | 0.022 6 | 1.486 4 | |
MSC | 0.705 8 | 0.020 3 | 1.860 5 | 0.258 8 | 0.030 5 | 1.186 5 | |
MSC+FD | 0.747 2 | 0.018 9 | 2.007 0 | 0.267 7 | 0.030 4 | 1.193 7 | |
SG | 0.676 1 | 0.017 6 | 1.773 1 | 0.195 1 | 0.041 2 | 1.138 6 | |
SG+FD | 0.761 1 | 0.017 3 | 2.064 5 | 0.466 8 | 0.029 4 | 1.398 9 | |
SNV | 0.676 6 | 0.021 3 | 1.774 3 | 0.203 3 | 0.032 0 | 1.144 4 | |
SNV+FD | 0.720 5 | 0.018 1 | 1.908 5 | 0.443 8 | 0.031 8 | 1.369 8 | |
FD | 0.752 8 | 0.019 7 | 2.029 4 | 0.376 3 | 0.022 2 | 1.293 5 | |
SD | 0.785 1 | 0.015 8 | 2.176 7 | 0.191 1 | 0.038 1 | 1.135 8 | |
PLS | Raw | 0.414 3 | 0.022 9 | 1.318 5 | 0.402 2 | 0.037 8 | 1.321 2 |
NDH | 0.512 5 | 0.024 9 | 1.445 2 | 0.204 4 | 0.034 9 | 1.145 2 | |
NDH+FD | 0.919 7 | 0.009 1 | 3.560 1 | 0.435 5 | 0.033 7 | 1.359 6 | |
MSC | 0.534 5 | 0.027 9 | 1.497 0 | 0.185 1 | 0.022 8 | 1.131 6 | |
MSC+FD | 0.924 8 | 0.010 0 | 3.678 4 | 0.226 3 | 0.033 2 | 1.161 3 | |
SG | 0.413 9 | 0.029 3 | 1.318 0 | 0.216 8 | 0.027 4 | 1.154 3 | |
SG+FD | 0.899 8 | 0.010 4 | 3.187 0 | 0.585 7 | 0.028 0 | 1.587 0 | |
SNV | 0.527 6 | 0.027 9 | 1.468 1 | 0.299 3 | 0.020 8 | 1.220 3 | |
SNV+FD | 0.888 4 | 0.011 4 | 3.021 1 | 0.546 9 | 0.028 7 | 1.517 5 | |
FD | 0.867 3 | 0.012 8 | 2.769 8 | 0.454 2 | 0.030 3 | 1.382 6 | |
SD | 0.871 7 | 0.013 2 | 2.816 6 | 0.475 2 | 0.026 7 | 1.410 1 |
图4 覆盆子鞣花酸和山柰酚-3-O-芸香糖苷的CARS波长光谱选择图 图A和C分别为鞣花酸和山柰酚-3-O-芸香糖苷的抽样变量、RMSECV值和回归系数路径变化趋势。图B和D分别为鞣花酸和山柰酚-3-O-芸香糖苷通过CARS绘制的波长分布图。
Fig.4 CARS wavelength spectral selection diagrams of ellagic acid and kaempferol-3-O-rutinoside from Rubus chingii Hu.
模型 | 预处理 方法 | 变量/ 个 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | |||||
CARS-RF | NDH+FD+CARS | 41 | 0.804 1 | 0.044 0 | 2.279 5 | 0.363 4 | 0.084 0 | 1.280 3 |
MSC+FD+CARS | 36 | 0.769 1 | 0.042 6 | 2.099 7 | 0.467 7 | 0.090 1 | 1.400 1 | |
SG+FD+CARS | 8 | 0.627 0 | 0.067 1 | 1.652 2 | 0.375 0 | 0.060 4 | 1.292 1 | |
SNV+FD+CARS | 28 | 0.768 3 | 0.049 6 | 2.096 2 | 0.516 5 | 0.065 4 | 1.469 1 | |
CARS-PLS | NDH+FD+CARS | 41 | 0.918 3 | 0.028 9 | 3.530 2 | 0.815 5 | 0.043 2 | 2.378 4 |
MSC+FD+CARS | 36 | 0.914 8 | 0.028 7 | 3.456 4 | 0.810 0 | 0.046 7 | 2.343 8 | |
SG+FD+CARS | 8 | 0.654 7 | 0.061 9 | 1.717 1 | 0.559 1 | 0.059 5 | 1.538 4 | |
SNV+FD+CARS | 28 | 0.930 7 | 0.025 9 | 3.833 1 | 0.903 8 | 0.032 6 | 3.292 6 |
表4 CARS算法处理后不同数据预处理方法下的鞣花酸预测结果
Table 4 Prediction results of ellagic acid under different data preprocessing methods after the CARS algorithm processing
模型 | 预处理 方法 | 变量/ 个 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | |||||
CARS-RF | NDH+FD+CARS | 41 | 0.804 1 | 0.044 0 | 2.279 5 | 0.363 4 | 0.084 0 | 1.280 3 |
MSC+FD+CARS | 36 | 0.769 1 | 0.042 6 | 2.099 7 | 0.467 7 | 0.090 1 | 1.400 1 | |
SG+FD+CARS | 8 | 0.627 0 | 0.067 1 | 1.652 2 | 0.375 0 | 0.060 4 | 1.292 1 | |
SNV+FD+CARS | 28 | 0.768 3 | 0.049 6 | 2.096 2 | 0.516 5 | 0.065 4 | 1.469 1 | |
CARS-PLS | NDH+FD+CARS | 41 | 0.918 3 | 0.028 9 | 3.530 2 | 0.815 5 | 0.043 2 | 2.378 4 |
MSC+FD+CARS | 36 | 0.914 8 | 0.028 7 | 3.456 4 | 0.810 0 | 0.046 7 | 2.343 8 | |
SG+FD+CARS | 8 | 0.654 7 | 0.061 9 | 1.717 1 | 0.559 1 | 0.059 5 | 1.538 4 | |
SNV+FD+CARS | 28 | 0.930 7 | 0.025 9 | 3.833 1 | 0.903 8 | 0.032 6 | 3.292 6 |
模型 | 预处理 方法 | 变量/ 个 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | |||||
CARS-RF | NDH+FD+CARS | 15 | 0.722 1 | 0.018 6 | 1.914 1 | 0.397 4 | 0.031 3 | 1.315 9 |
MSC+FD+CARS | 18 | 0.702 7 | 0.021 5 | 1.850 7 | 0.625 3 | 0.018 3 | 1.668 8 | |
SG+FD+CARS | 21 | 0.759 1 | 0.019 6 | 2.056 0 | 0.492 0 | 0.020 3 | 1.433 2 | |
SNV+FD+CARS | 34 | 0.732 4 | 0.019 3 | 1.950 7 | 0.477 9 | 0.026 1 | 1.413 7 | |
CARS-PLS | NDH+FD+CARS | 15 | 0.821 0 | 0.015 5 | 2.384 8 | 0.749 9 | 0.024 3 | 2.057 3 |
MSC+FD+CARS | 18 | 0.817 5 | 0.014 8 | 2.361 7 | 0.598 6 | 0.026 4 | 1.612 2 | |
SG+FD+CARS | 21 | 0.849 7 | 0.012 2 | 2.602 5 | 0.758 6 | 0.023 2 | 2.078 9 | |
SNV+FD+CARS | 34 | 0.838 2 | 0.014 4 | 2.508 8 | 0.752 4 | 0.019 3 | 2.052 8 |
表5 CARS算法处理后不同数据预处理方法下的山柰酚-3-O-芸香糖苷预测结果
Table 5 Prediction results of kaempferol-3-O-rutinoside under different data preprocessing methods after the CARS algorithm processing
模型 | 预处理 方法 | 变量/ 个 | 训练集 | 测试集 | ||||
---|---|---|---|---|---|---|---|---|
RMSEC | RPD | RMSEP | RPD | |||||
CARS-RF | NDH+FD+CARS | 15 | 0.722 1 | 0.018 6 | 1.914 1 | 0.397 4 | 0.031 3 | 1.315 9 |
MSC+FD+CARS | 18 | 0.702 7 | 0.021 5 | 1.850 7 | 0.625 3 | 0.018 3 | 1.668 8 | |
SG+FD+CARS | 21 | 0.759 1 | 0.019 6 | 2.056 0 | 0.492 0 | 0.020 3 | 1.433 2 | |
SNV+FD+CARS | 34 | 0.732 4 | 0.019 3 | 1.950 7 | 0.477 9 | 0.026 1 | 1.413 7 | |
CARS-PLS | NDH+FD+CARS | 15 | 0.821 0 | 0.015 5 | 2.384 8 | 0.749 9 | 0.024 3 | 2.057 3 |
MSC+FD+CARS | 18 | 0.817 5 | 0.014 8 | 2.361 7 | 0.598 6 | 0.026 4 | 1.612 2 | |
SG+FD+CARS | 21 | 0.849 7 | 0.012 2 | 2.602 5 | 0.758 6 | 0.023 2 | 2.078 9 | |
SNV+FD+CARS | 34 | 0.838 2 | 0.014 4 | 2.508 8 | 0.752 4 | 0.019 3 | 2.052 8 |
图5 CARS-PLS模型下的鞣花酸和山柰酚-3-O-芸香糖苷测量值和预测值的散点图 A,鞣花酸训练集;B,鞣花酸测试集;C,山柰酚-3-O-芸香糖苷训练集;D,山柰酚-3-O-芸香糖苷测试集。
Fig.5 Scatter plots of the measured and predicted values of ellagic acid and kaempferol-3-O-rutinoside under CARS-PLS model
[1] | 陈丽梅, 魏文萍, 王慧, 等. 中药覆盆子炮制研究进展[J]. 中华中医药学刊, 2024, 42(12): 138-141. |
[2] | ISPIRYAN A, ATKOCIUNIENE V, MAKSTUTIENE N, et al. Correlation between antimicrobial activity values and total phenolic content/antioxidant activity in Rubus idaeus L[J]. Plants, 2024, 13(4): 504. |
[3] | GARJONYTE R, BUDIENE J, LABANAUSKAS L, et al. In vitro antioxidant and prooxidant activities of red raspberry (Rubus idaeus L.) stem extracts[J]. Molecules, 2022, 27(13): 4073. |
[4] | RAAL A, VAHTRA A, KOSHOVYI O, et al. Polyphenolic compounds in the stems of raspberry (Rubus idaeus) growing wild and cultivated[J]. Molecules, 2024, 29(21): 5016. |
[5] | ZHANG X B, ZHAO Y P, GUO L P, et al. Differences in chemical constituents of Artemisia annua L from different geographical regions in China[J]. PLoS One, 2017, 12(9): e0183047. |
[6] | PIAO X M, HUO Y, KANG J P, et al. Diversity of ginsenoside profiles produced by various processing technologies[J]. Molecules, 2020, 25(19): 4390. |
[7] | YANG R W, HAN B, WANG B, et al. Insights into the potential quality markers of Rubus chingii Hu fruit at different growth stages[J]. Food Research International, 2025, 201: 115552. |
[8] | LI Q, QI L M, ZHAO K, et al. Integrative quantitative and qualitative analysis for the quality evaluation and monitoring of Danshen medicines from different sources using HPLC-DAD and NIR combined with chemometrics[J]. Frontiers in Plant Science, 2022, 13: 932855. |
[9] | MA H L, ZHAO Y, HE W X, et al. Quantitative analysis of three ingredients in Salvia miltiorrhiza by near infrared spectroscopy combined with hybrid variable selection strategy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 315: 124273. |
[10] | MIAO X X, MIAO Y, LIU Y, et al. Measurement of nitrogen content in rice plant using near infrared spectroscopy combined with different PLS algorithms[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 284: 121733. |
[11] | LI G Y, LI J Q, LIU H G, et al. Geographic traceability of Gastrodia elata Blum based on combination of NIRS and chemometrics[J]. Food Chemistry, 2025, 464: 141529. |
[12] | PIELORZ S, FECKA I, BERNACKA K, et al. Quantitative determination of polyphenols and flavonoids in Cistus×incanus on the basis of IR, NIR and Raman spectra[J]. Molecules, 2022, 28(1): 161. |
[13] | ZHANG S J, GONG X C, QU H B. Near-infrared spectroscopy and HPLC combined with chemometrics for comprehensive evaluation of six organic acids in Ginkgo biloba leaf extract[J]. Journal of Pharmacy and Pharmacology, 2022, 74(7): 1040-1050. |
[14] | ZHU Y W, CHEN X Y, WANG S M, et al. Simultaneous measurement of contents of liquirtin and glycyrrhizic acid in liquorice based on near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 209-214. |
[15] | LI L L, LI L, GOU G Y, et al. A nondestructive detection method for the muti-quality attributes of oats using near-infrared spectroscopy[J]. Foods, 2024, 13(22): 3560. |
[16] | XU X F, NIE L X, PAN L L, et al. Quantitative analysis of Panax ginseng by FT-NIR spectroscopy[J]. Journal of Analytical Methods in Chemistry, 2014, 2014: 741571. |
[17] | YANG Z Y, CHENG Z, SU P Y, et al. A model for the detection of β-glucan content in oat grain based on near infrared spectroscopy[J]. Journal of Food Composition and Analysis, 2024, 129: 106105. |
[18] | 庄伟岳. HPLC法同时测定覆盆子不同部位中5种有效成分含量[J]. 中国民族民间医药, 2024, 33(22): 16-20. |
[19] | XIE C Q, XU N, SHAO Y N, et al. Using FT-NIR spectroscopy technique to determine arginine content in fermented Cordyceps sinensis mycelium[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 149: 971-977. |
[20] | ZHANG J B, LI Y, WANG B, et al. Rapid evaluation of Radix Paeoniae Alba and its processed products by near-infrared spectroscopy combined with multivariate algorithms[J]. Analytical and Bioanalytical Chemistry, 2023, 415(9): 1719-1732. |
[21] | HARUNA S A, LI H H, WEI W Y, et al. Simultaneous quantification of total flavonoids and phenolic content in raw peanut seeds via NIR spectroscopy coupled with integrated algorithms[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285: 121854. |
[22] | SHI H T, YU P Q. Using molecular spectroscopic techniques (NIR and ATR-FT/MIR) coupling with various chemometrics to test possibility to reveal chemical and molecular response of cool-season adapted wheat grain to ergot alkaloids[J]. Toxins, 2023, 15(2): 151. |
[23] | PING F J, YANG J H, ZHOU X J, et al. Quality assessment and ripeness prediction of table grapes using visible-near-infrared spectroscopy[J]. Foods, 2023, 12(12): 2364. |
[24] | YE S T, WENG H Y, XIANG L R, et al. Synchronously predicting tea polyphenol and epigallocatechin gallate in tea leaves using Fourier transform-near-infrared spectroscopy and machine learning[J]. Molecules, 2023, 28(14): 5379. |
[25] | 潘萍, 陈梦婷, 李翱翔, 等. 覆盆子化学成分、药理作用与临床运用研究进展[J]. 中国药师, 2024, 27(1): 155-170. |
[26] | 彭彬倩, 沈福苗. 近红外光谱技术在食品检测中的应用研究进展[J]. 食品安全导刊, 2025(5): 181-184, 189. |
[27] | NAZARLOO A S, SHARABIANI V R, GILANDEH Y A, et al. Evaluation of different models for non-destructive detection of tomato pesticide residues based on near-infrared spectroscopy[J]. Sensors, 2021, 21(9): 3032. |
[28] | MANCINI M, MAZZONI L, GAGLIARDI F, et al. Application of the non-destructive NIR technique for the evaluation of strawberry fruits quality parameters[J]. Foods, 2020, 9(4): 441. |
[29] | HUANG Z X, LIU L, LI G J, et al. Nondestructive determination of diastase activity of honey based on visible and near-infrared spectroscopy[J]. Molecules, 2019, 24(7): 1244. |
[30] | ADNAN A, VON HÖRSTEN D, PAWELZIK E, et al. Rapid prediction of moisture content in intact green coffee beans using near infrared spectroscopy[J]. Foods, 2017, 6(5): 38. |
[31] | TIAN Z X, TAN Z F, LI Y J, et al. Rapid monitoring of flavonoid content in sweet tea (Lithocarpus litseifolius (Hance) Chun) leaves using NIR spectroscopy[J]. Plant Methods, 2022, 18(1): 44. |
[32] | ZHAO X H, PAN X, YAN W H, et al. Visible-NIR hyperspectral classification of grass based on multivariate smooth mapping and extreme active learning approach[J]. Scientific Reports, 2022, 12(1): 9017. |
[33] | JI Q G, LI C F, FU X S, et al. Protected geographical indication discrimination of Zhejiang and non-Zhejiang Ophiopogonis japonicus by near-infrared (NIR) spectroscopy combined with chemometrics: the influence of different stoichiometric and spectrogram pretreatment methods[J]. Molecules, 2023, 28(6): 2803. |
[34] | LI M X, SHI Y B, ZHANG J B, et al. Rapid evaluation of Ziziphi Spinosae Semen and its adulterants based on the combination of FT-NIR and multivariate algorithms[J]. Food Chemistry: X, 2023, 20: 101022. |
[35] | BAI Z J, XIE M D, HU B F, et al. Estimation of soil organic carbon using vis-NIR spectral data and spectral feature bands selection in southern Xinjiang, China[J]. Sensors, 2022, 22(16): 6124. |
[1] | 曾峰, 王方成. 光谱法快速鉴定附子道地性的研究[J]. 浙江农业科学, 2024, 65(3): 562-566. |
[2] | 钭凌娟, 王琤帅, 陈有来, 吴梅, 李根有, 傅杨群. 覆盆子鞣花酸含量影响因素分析[J]. 浙江农业科学, 2023, 64(1): 234-236. |
[3] | 王松琳, 潘俊杰, 陈正道. 掌叶覆盆子根茎中重金属年动态变化及相关性分析[J]. 浙江农业科学, 2022, 63(10): 2291-2294. |
[4] | 白丽萍, 王伟, 王强, 王君虹, 张玉, 朱杰. 近红外光谱快速检测葡萄酒品质[J]. 浙江农业科学, 2021, 62(2): 389-391. |
[5] | 巫小建, 曾凡荣, 岳文浩, 汪军妹. 大麦籽粒总淀粉含量近红外快速无损检测模型的构建[J]. 浙江农业科学, 2021, 62(1): 40-41. |
[6] | 姜娟萍, 徐丹彬, 王松琳, 卢红讯. 浙江省覆盆子产销现状及发展对策[J]. 浙江农业科学, 2021, 62(1): 55-56. |
[7] | 王云冰, 江景勇. 掌叶覆盆子诱导培养的抗褐化研究[J]. 浙江农业科学, 2020, 61(1): 46-48. |
[8] | 严建立, 周历萍, 张乐, 王淑珍, 忻雅, 肖文斐, 柴伟国. 掌叶覆盆子红熟果营养品质及耐贮性测定[J]. 浙江农业科学, 2019, 60(2): 242-244. |
[9] | 陈剑兵, 杨振寰, 夏其乐, 王子恺, 廖捷, 曹艳, 陈良武. 加工工艺对覆盆子果汁饮料品质的影响[J]. 浙江农业科学, 2018, 59(10): 1892-1894. |
[10] | 江景勇1,洪洁2,陈珍2. 掌叶覆盆子生物学特性及花粉活力测定[J]. 浙江农业科学, 2016, 1(1): 52-. |
[11] | 吕学高,赵军华*,楼肖成,朱正梅. 浙江省玉米农家种品质初探[J]. 浙江农业科学, 2015, 1(5): 640-. |
[12] | 楼肖成;吕学高;朱正梅;赵军华. 普通玉米新组合的品质多样性分析[J]. , 2014, 1(5): 0-652. |
[13] | 王利平;陈珍;江景勇;郑江仙;徐婷婷;宋颖婷. 优质掌叶覆盆子快繁体系的建立[J]. , 2013, 1(8): 0-970. |
[14] | 江景勇;陈珍;卢秀友;洪莉. 掌叶覆盆子根插快繁育苗技术[J]. , 2013, 1(2): 0-146. |
[15] | 杨丹;刘新;王川丕;蒋迎. 近红外光谱技术在茶叶及茶制品上应用[J]. , 2012, 1(9): 0-1294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||