浙江农业科学 ›› 2023, Vol. 64 ›› Issue (6): 1429-1437.DOI: 10.16178/j.issn.0528-9017.20220211
收稿日期:
2022-03-12
出版日期:
2023-06-11
发布日期:
2023-06-07
作者简介:
贾利强,副教授,博士,硕士生导师,E-mail:liqiangj@163.com。
基金资助:
Received:
2022-03-12
Online:
2023-06-11
Published:
2023-06-07
摘要:
bZIP蛋白是植物转录因子中数目最多、最保守的一类转录因子,参与调控植物生长发育及逆境胁迫响应机制等诸多生命进程。本研究选取玉米bZIP基因亚家族、共计14个ZmbZIP基因为研究对象,系统地研究了ZmbZIP在应答不同逆境胁迫的表达模式。系统进化树分析结果表明,14个ZmbZIP基因可以细分为5个亚组。实时荧光定量PCR(qRT-PCR)分析结果显示,ZmbZIP基因在不同组织器官中有不同的表达模式,其表达模式多样性显示其生物学功能的分化。在人为模拟盐、干旱、低温和硝态氮/铵态氮缺乏等逆境胁迫条件下,ZmbZIP基因呈现不同的表达模式,表明ZmbZIP基因广泛地参与各类逆境胁迫响应途径,并在其中发挥着不同的作用。本研究为将来深入研究这些基因的生物学功能提供科学数据。
中图分类号:
贾利强, 刘洋, 杨胜美, 杨雨娇, 杨秀万. 玉米bZIP亚家族基因的表达模式分析[J]. 浙江农业科学, 2023, 64(6): 1429-1437.
基因名称 | 基因位点 | 上游引物(5'-3') | 下游引物(5'-3') |
---|---|---|---|
ZmbZIP5 | GRMZM2G062391 | TTCCACCCACCCCATCCCAAC | GGCCCCTTCCCAATGTCCAAAC |
ZmbZIP12 | GRMZM2G332294 | CGGAGGTGAAAAGGGCAATGTC | TCAGCGATGTACCTCATCTTCCTTTC |
ZmbZIP22 | GRMZM2G112483 | AGGCTATTTCCGACGCTAAGCTC | AGGCTATTTCCGACGCTAAGCTC |
ZmbZIP23 | GRMZM5G821024 | CCACCACACTTTCGGCACAGC | CTGGACTTCTTCTCTCAGGGCGTC |
ZmbZIP31 | GRMZM2G180847 | ACCACTGAACGCGACCCAA | GACGCCTTTGCCGACGACAC |
ZmbZIP35 | GRMZM2G060109 | GCACCCATCGTATCCCATGCGTG | ATCAACCCCAGGAGACTAACACTTG |
ZmbZIP43 | GRMZM2G146020 | GCAGCAGATTCCATCCTACTTCGTG | ACTGTCTCCCGTTTGATGGACT |
ZmbZIP61 | AC190609.3_FGT001 | CATCACAACCGGCACTCGAT | ATCGATTAGGGCAAGCTCGGCAAG |
ZmbZIP62 | GRMZM2G149150 | CGACACTCTCAGCACAGTTGACAAT | ATCTCCCCAGTTGCGAGTTTCAGAC |
ZmbZIP64 | GRMZM2G079365 | CACGCTTTCGGCACAGCTCAC | GCCGCTGGACTTCTTCCCTC |
ZmbZIP105 | AC200057.4_FGT007 | CCTTGATGTGGACAAGCTGAACT | TGGACTGGCTATGCTGATGCCTTG |
ZmbZIP107 | GRMZM2G149040 | CGGAGAGGTGATGGAGGCCAAGAA | AGTTTGAACCTTCCGCTCCAATTCTG |
ZmbZIP130 | GRMZM2G151295 | CCAATGTGCCAAACCACCAGATG | TGGCCCCTTTCCAATGTCCAAAC |
ZmbZIP137 | GRMZM2G136266 | TCGCGCTCATCGACCCCAAG | AGTGGCCTCCGTTTGCAGAG |
表1 ZmbZIPs实时荧光定量PCR引物
基因名称 | 基因位点 | 上游引物(5'-3') | 下游引物(5'-3') |
---|---|---|---|
ZmbZIP5 | GRMZM2G062391 | TTCCACCCACCCCATCCCAAC | GGCCCCTTCCCAATGTCCAAAC |
ZmbZIP12 | GRMZM2G332294 | CGGAGGTGAAAAGGGCAATGTC | TCAGCGATGTACCTCATCTTCCTTTC |
ZmbZIP22 | GRMZM2G112483 | AGGCTATTTCCGACGCTAAGCTC | AGGCTATTTCCGACGCTAAGCTC |
ZmbZIP23 | GRMZM5G821024 | CCACCACACTTTCGGCACAGC | CTGGACTTCTTCTCTCAGGGCGTC |
ZmbZIP31 | GRMZM2G180847 | ACCACTGAACGCGACCCAA | GACGCCTTTGCCGACGACAC |
ZmbZIP35 | GRMZM2G060109 | GCACCCATCGTATCCCATGCGTG | ATCAACCCCAGGAGACTAACACTTG |
ZmbZIP43 | GRMZM2G146020 | GCAGCAGATTCCATCCTACTTCGTG | ACTGTCTCCCGTTTGATGGACT |
ZmbZIP61 | AC190609.3_FGT001 | CATCACAACCGGCACTCGAT | ATCGATTAGGGCAAGCTCGGCAAG |
ZmbZIP62 | GRMZM2G149150 | CGACACTCTCAGCACAGTTGACAAT | ATCTCCCCAGTTGCGAGTTTCAGAC |
ZmbZIP64 | GRMZM2G079365 | CACGCTTTCGGCACAGCTCAC | GCCGCTGGACTTCTTCCCTC |
ZmbZIP105 | AC200057.4_FGT007 | CCTTGATGTGGACAAGCTGAACT | TGGACTGGCTATGCTGATGCCTTG |
ZmbZIP107 | GRMZM2G149040 | CGGAGAGGTGATGGAGGCCAAGAA | AGTTTGAACCTTCCGCTCCAATTCTG |
ZmbZIP130 | GRMZM2G151295 | CCAATGTGCCAAACCACCAGATG | TGGCCCCTTTCCAATGTCCAAAC |
ZmbZIP137 | GRMZM2G136266 | TCGCGCTCATCGACCCCAAG | AGTGGCCTCCGTTTGCAGAG |
基因号 | 基因名称 | 大小/aa | 分子量/ku | 等电点 | 染色体位置 | 可变剪切/个 |
---|---|---|---|---|---|---|
GRMZM2G062391 | ZmbZIP5 | 318 | 35.10 | 4.60 | Chr1:56911430-56916805 | 2 |
GRMZM2G332294 | ZmbZIP12 | 249 | 26.21 | 5.06 | Chr1:198774832-198777673 | 1 |
GRMZM2G112483 | ZmbZIP22 | 229 | 23.88 | 5.10 | Chr2:34882973-34887627 | 4 |
GRMZM5G821024 | ZmbZIP23 | 350 | 37.78 | 6.61 | Chr2:145114887-145119368 | 3 |
GRMZM2G180847 | ZmbZIP31 | 162 | 17.55 | 9.32 | Chr2:199265525-199270738 | 4 |
GRMZM2G060109 | ZmbZIP35 | 362 | 38.98 | 7.04 | Chr2:223801093-223807824 | 2 |
GRMZM2G146020 | ZmbZIP43 | 321 | 34.63 | 6.89 | Chr3:143644925-143649063 | 1 |
AC190 609.3_FGT001 | ZmbZIP61 | 383 | 40.59 | 5.00 | Chr4:198573893-198576750 | 1 |
GRMZM2G149150 | ZmbZIP62 | 466 | 49.70 | 7.04 | Chr4:199034864-199038928 | 1 |
GRMZM2G079365 | ZmbZIP64 | 338 | 36.34 | 6.50 | Chr4:217387342-217403410 | 1 |
AC200 057.4_FGT007 | ZmbZIP105 | 370 | 39.58 | 6.58 | Chr7:145424990-145430280 | 1 |
GRMZM2G149040 | ZmbZIP107 | 374 | 40.31 | 7.12 | Chr7:177744976-177750636 | 3 |
GRMZM2G151295 | ZmbZIP130 | 353 | 38.05 | 6.58 | Chr9:133377512-133383 097 | 2 |
GRMZM2G136266 | ZmbZIP137 | 334 | 36.01 | 6.58 | Chr10:7855627-7859481 | 2 |
表2 玉米ZmbZIP蛋白的理化性质分析
基因号 | 基因名称 | 大小/aa | 分子量/ku | 等电点 | 染色体位置 | 可变剪切/个 |
---|---|---|---|---|---|---|
GRMZM2G062391 | ZmbZIP5 | 318 | 35.10 | 4.60 | Chr1:56911430-56916805 | 2 |
GRMZM2G332294 | ZmbZIP12 | 249 | 26.21 | 5.06 | Chr1:198774832-198777673 | 1 |
GRMZM2G112483 | ZmbZIP22 | 229 | 23.88 | 5.10 | Chr2:34882973-34887627 | 4 |
GRMZM5G821024 | ZmbZIP23 | 350 | 37.78 | 6.61 | Chr2:145114887-145119368 | 3 |
GRMZM2G180847 | ZmbZIP31 | 162 | 17.55 | 9.32 | Chr2:199265525-199270738 | 4 |
GRMZM2G060109 | ZmbZIP35 | 362 | 38.98 | 7.04 | Chr2:223801093-223807824 | 2 |
GRMZM2G146020 | ZmbZIP43 | 321 | 34.63 | 6.89 | Chr3:143644925-143649063 | 1 |
AC190 609.3_FGT001 | ZmbZIP61 | 383 | 40.59 | 5.00 | Chr4:198573893-198576750 | 1 |
GRMZM2G149150 | ZmbZIP62 | 466 | 49.70 | 7.04 | Chr4:199034864-199038928 | 1 |
GRMZM2G079365 | ZmbZIP64 | 338 | 36.34 | 6.50 | Chr4:217387342-217403410 | 1 |
AC200 057.4_FGT007 | ZmbZIP105 | 370 | 39.58 | 6.58 | Chr7:145424990-145430280 | 1 |
GRMZM2G149040 | ZmbZIP107 | 374 | 40.31 | 7.12 | Chr7:177744976-177750636 | 3 |
GRMZM2G151295 | ZmbZIP130 | 353 | 38.05 | 6.58 | Chr9:133377512-133383 097 | 2 |
GRMZM2G136266 | ZmbZIP137 | 334 | 36.01 | 6.58 | Chr10:7855627-7859481 | 2 |
[1] | BAILLO E H, KIMOTHO R N, ZHANG Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10 (10):771. |
[2] | GLOVER J M, HARRISON S C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA[J]. Nature, 1995, 373(6511): 257-261. |
[3] | DRÖGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family: an update[J]. Current Opinion in Plant Biology, 2018, 45:36-49. |
[4] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2007, 146(2):323-324. |
[5] | YANG Y, YU T F, MA J, et al. The Soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences, 2020, 21(2): 670. |
[6] | WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6): 463-476. |
[7] | JIN Z, XU W, LIU A Z. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.)[J]. Planta, 2014, 239(2): 299-312. |
[8] | BALOGLU M C, ELDEM V, HAJYZADEH M, et al. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4): e96014. |
[9] | LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15:281. |
[10] | ZHAO J, GUO R R, GUO C L, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7:376. |
[11] | LI D Y, FU F Y, ZHANG H J, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.)[J]. BMC Genomics, 2015, 16:771. |
[12] | LIU M Y, WEN Y D, SUN W J, et al. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat[J]. BMC Genomics, 2019, 20(1):483. |
[13] | YANG Z M, SUN J, CHEN Y, et al. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida[J]. BMC Genetics, 2019, 20(1):41. |
[14] | GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance[J]. Frontiers in Plant Science, 2020, 11:139. |
[15] | ZHANG Y, GAO W L, LI H T, et al. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.)[J]. BMC Genomics, 2020, 21(1): 483. |
[16] | MIRZAEI K, BAHRAMNEJAD B, FATEMI S. Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum)[J]. Plant Gene, 2020, 24: 100257. |
[17] | GANGAPPA S N, BOTTO J F. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10): 1353-1365. |
[18] | GIBALOVÁ A, STEINBACHOVÁ L, HAFIDH S, et al. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte[J]. Plant Reproduction, 2017, 30(1): 1-17. |
[19] | JAIN P, SHAH K, RISHI V. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2018, 1866(12):1249-1259. |
[20] | ABE M, KOBAYASHI Y, YAMAMOTO S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005, 309(5737):1052-1056. |
[21] | VAN LEENE J, BLOMME J, KULKARNI S R, et al. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development[J]. Journal of Experimental Botany, 2016, 67(19): 5825-5840. |
[22] | WIGGE P A, KIM M C, JAEGER K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 2005, 309(5737): 1056-1059. |
[23] | HSIEH T H, LI C W, SU R C, et al. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response[J]. Planta, 2010, 231(6):1459-1473. |
[24] | COLLANI S, NEUMANN M, YANT L, et al. FT modulates genome-wide DNA-binding of the bZIP transcription factor FD[J]. Plant Physiology, 2019, 180(1): 367-380. |
[25] | JUNG J H, LEE H J, RYU J Y, et al. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering[J]. Molecular Plant, 2016, 9(12):1647-1659. |
[26] | ROMERA-BRANCHAT M, SEVERING E, POCARD C, et al. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP[J]. Cell Reports, 2020, 31(9): 107717. |
[27] | ZHANG M, LIU Y H, CAI H Y, et al. The bZIP transcription factor GmbZIP15 negatively regulates salt- and drought-stress responses in soybean[J]. International Journal of Molecular Sciences, 2020, 21(20): 7778. |
[28] | YOSHIDA T, FUJITA Y, MARUYAMA K, et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J]. Plant, Cell & Environment, 2015, 38(1):35-49. |
[29] | LIU C T, MAO B G, OU S J, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1/2):19-36. |
[30] | BI C X, YU Y H, DONG C H, et al. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat[J]. Plant Biotechnology Journal, 2021, 19(2):209-211. |
[31] | CHANG H C, TSAI M C, WU S S, et al. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana[J]. Botanical Studies, 2019, 60(1):16. |
[32] | WANG W B, QIU X P, YANG Y X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses[J]. Frontiers in Plant Science, 2019, 10:630. |
[33] | CAO L R, LU X M, ZHANG P Y, et al. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2019, 20(17): 4103. |
[34] | LEE J S, ADAMS K L. Global insights into duplicated gene expression and alternative splicing in polyploid Brassica napus under heat, cold, and drought stress[J]. The Plant Genome, 2020, 13(3):e20057. |
[35] | WALSH J R, WOODHOUSE M R, ANDORF C M, et al. Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize[J]. BMC Plant Biology, 2020, 20(1): 4. |
[36] | CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26(5):640-646. |
[37] | ZHONG L, CHEN D D, MIN D H, et al. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2015, 457(3):433-439. |
[38] | VINCENTZ M, BANDEIRA-KOBARG C, GAUER L, et al. Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein[J]. Journal of Molecualr Evolution, 2003, 56(1):105-116. |
[39] | SUN Y Y, SHI Y H, LIU G G, et al. Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice[J]. The New Phytologist, 2020, 228(5):1548-1558. |
[1] | 赵德风, 陈然, 肖国强, 滕爽爽. 泥蚶转录因子c-Myc与下游ATP结合盒转运蛋白基因ABCA3启动子的结合鉴定[J]. 浙江农业科学, 2023, 64(6): 1317-1322. |
[2] | 张占平, 孙嘉莹, 陆佳欣, 孔令阳, 徐姣, 马伟, 刘秀波. 植物特有的YABBY基因特征与功能研究现状[J]. 浙江农业科学, 2023, 64(6): 1545-1552. |
[3] | 陈坚剑, 张华沛, 王宣怀, 吴振兴, 李向楠, 吕桂华. 贮藏温度及时间对甜玉米糖分的影响[J]. 浙江农业科学, 2023, 64(4): 931-934. |
[4] | 许竹溦, 雷俊, 邵晓伟, 石子建, 陈润兴. 施用不同复合肥对轮作玉米农艺性状和产量的影响[J]. 浙江农业科学, 2023, 64(3): 563-566. |
[5] | 赵梦佳, 裘建荣, 崔萌萌, 蔡娜丹, 蔡盼, 金珠群, 诸亚铭. 黑糯玉米秋季新品种比较试验初报[J]. 浙江农业科学, 2023, 64(3): 567-569. |
[6] | 薛国峰, 樊应虎, 王会军, 张运锋, 陆秀春, 欧阳军. 鲜食甜玉米楚甜117两年自主区域试验[J]. 浙江农业科学, 2023, 64(3): 578-581. |
[7] | 查燕, 赵博, 赵琳, 陈淇. 竹炭对镉污染土壤中玉米生长和镉积累的影响[J]. 浙江农业科学, 2023, 64(3): 582-587. |
[8] | 肖明纲. 36份新选育玉米自交系抗瘤黑粉病鉴定及抗性遗传初步分析[J]. 浙江农业科学, 2023, 64(1): 199-203. |
[9] | 李金龙, 郭海霞, 申雪梅, 王吕, 姜华, 单贵莲, 段新慧. 4种生物制剂对青贮玉米小斑病的防治效果[J]. 浙江农业科学, 2023, 64(1): 209-213. |
[10] | 李淑芬, 李洪涛, 许瀚元, 祝庆, 柴文波, 张玉明, 王军. 黄淮南部适夏播鲜食玉米品种筛选及评价[J]. 浙江农业科学, 2022, 63(9): 1930-1935. |
[11] | 赵文明, 袁建华, 张美景, 孔令杰, 李杰, 陈艳萍. 糯玉米苏科糯1701丰产稳产性及产量构成因素分析[J]. 浙江农业科学, 2022, 63(9): 1940-1943. |
[12] | 石子建, 徐建祥, 李韵, 汪寿根, 许竹溦, 雷俊, 邵晓伟, 唐鹏. 春季促早栽培条件下播期对鲜食玉米产量的影响[J]. 浙江农业科学, 2022, 63(9): 1947-1951. |
[13] | 马瑞萍, 梁熠, 于祥. 缓/控释氮肥输入对玉米生长、氮素利用及环境效应的影响[J]. 浙江农业科学, 2022, 63(9): 1968-1974. |
[14] | 王斯亮, 闫成进, 陈兰, 吴永汉, 朱宇. 5种性诱剂对草地贪夜蛾的田间诱集效果比较[J]. 浙江农业科学, 2022, 63(9): 2082-2085. |
[15] | 石益挺, 郭国锦, 李向楠, 吴振兴, 陈坚剑, 吕桂华. 玉米浙甜20的选育及栽培技术[J]. 浙江农业科学, 2022, 63(8): 1661-1663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||