| [1] |
张会民, 张卫建, 黄晶, 等. 典型稻作区土壤肥力时空变化与提升原理[M]. 北京: 科学出版社, 2022.
|
| [2] |
于秀娟, 郝向举, 党子乔, 等. 中国小龙虾产业发展报告(2022)[J]. 中国水产, 2022, 559(6): 47-54.
|
|
YU X J, HAO X J, DANG Z Q, et al. China crayfish industry development report (2022)[J]. China Fisheries, 2022, 559(6): 47-54.
|
| [3] |
蔡晨, 李谷, 朱建强, 等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226.
|
|
CAI C, LI G, ZHU J Q, et al. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226.
|
| [4] |
余经纬, 黄巍, 李玉成, 等. 稻田生态综合种养模式对土壤理化性质及腐殖质的影响[J]. 生物学杂志, 2020, 37(3): 81-85.
|
|
YU J W, HUANG W, LI Y C, et al. Effects of ecological comprehensive planting and breeding patterns on soil physical and chemical properties and humus in paddy fields[J]. Journal of Biology, 2020, 37(3): 81-85.
|
| [5] |
ZHANG D Y, CAI C, ZHU J Q. Changes of soil water-stable aggregates after rice-crawfish rotation in low-lying paddy fields: a case study in Jianghan Plain of China[J]. Communications in Soil Science and Plant Analysis, 2021, 52(19): 2358-2372.
|
| [6] |
CLAVERO M, LÓPEZ V, FRANCH N, et al. Use of seasonally flooded rice fields by fish and crayfish in a Mediterranean wetland[J]. Agriculture, Ecosystems & Environment, 2015, 213: 39-46.
|
| [7] |
蒋岩, 赵灿, 刘光明, 等. 稳稻种养模式下水稻产量形成及周年经济效益研究[J]. 中国稻米, 2021, 27(5): 23-28.
|
|
JIANG Y, ZHAO C, LIU G M, et al. Characteristics of rice yield formation and annual economic benefit under stable rice integrative cultivation mode[J]. China Rice, 2021, 27(5): 23-28.
|
| [8] |
彭广霞, 李佳琦. 稻虾轮作技术简介[J]. 水产养殖, 2021, 42(3): 50-51.
|
|
PENG G X, LI J Q. Brief introduction of rice-shrimp rotation technology[J]. Journal of Aquaculture, 2021, 42(3): 50-51.
|
| [9] |
常东洲, 王延晖, 张芹, 等. 稻虾轮作养殖技术[J]. 河南水产, 2022(3): 14-15.
|
|
CHANG D Z, WANG Y H, ZHANG Q, et al. Rice-crawfish rotation technology[J]. Henan Fisheries, 2022(3): 14-15.
|
| [10] |
公翠萍, 胡大雁, 娄剑锋, 等. “稻-小龙虾”高产轮作模式养殖试验[J]. 科学养鱼, 2022(8): 34-36.
|
|
GONG C P, HU D Y, LOU J F, et al. Cultivation experiment of “rice-crawfish” in high-yield rotation mode[J]. Scientific Fish Farming, 2022(8): 34-36.
|
| [11] |
冯叶. 浅谈嘉兴市秀洲区稻虾轮作种养模式的应用[J]. 农家科技(上旬刊), 2021(5): 146.
|
|
FENG Y. Discussion on the application of rice-shrimp rotation planting and breeding model in Xiuzhou District of Jiaxing City[J]. Nongjia Keji, 2021(5): 146.
|
| [12] |
周文杰. 双千亩稻虾轮作实例浅析[J]. 科学养鱼, 2022(6): 37-38.
|
|
ZHOU W J. Analysis on the example of rice-shrimp rotation with double thousand mu[J]. Scientific Fish Farming, 2022(6): 37-38.
|
| [13] |
郭安托, 陈坚, 周贤锋, 等. 温州水稻-小龙虾轮作高效盈利模式[J]. 水产养殖, 2023, 44(2): 55-56.
|
|
GUO A T, CHEN J, ZHOU X F, et al. Efficient profit model of rice-crayfish rotation in Wenzhou[J]. Journal of Aquaculture, 2023, 44(2): 55-56.
|
| [14] |
郑纪勇, 邵明安, 张兴昌. 黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报, 2004, 18(3): 53-56.
|
|
ZHENG J Y, SHAO M A, ZHANG X C. Spatial variation of surface soil's bulk density and saturated hydraulic conductivity on slope in loess region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53-56.
|
| [15] |
顾道健, 薛朋, 陆希婕, 等. 秸秆还田对水稻生长发育和稻田温室气体排放的影响[J]. 中国稻米, 2014, 20(3): 1-5.
|
|
GU D J, XUE P, LU X J, et al. Effect of straw returning on growth and development of rice and greenhouse gas emission from paddy field[J]. China Rice, 2014, 20(3): 1-5.
|
| [16] |
蒋正德. 稻秸秋季打浆还田培肥地力与减排固碳效应研究[D]. 沈阳: 沈阳农业大学, 2022.
|
|
JIANG Z D. Effect studies on increasing soil fertility and carbon sequestration of rice straw return with mud in autumn[D]. Shenyang: Shenyang Agricultural University, 2022.
|
| [17] |
黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
|
| [18] |
FILLERY R P, DEDATTA S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields[J]. Fertilizer Research, 1986, 9: 78-98.
|
| [19] |
PORTNOY J W, GIBLIN A E. Biogeochemical effects of seawater restoration to diked salt marshes[J]. Ecological Applications, 1997, 7(3): 1054-1063.
|
| [20] |
LI Q M, XU L, XU L J, et al. Influence of consecutive integrated rice-crayfish culture on phosphorus fertility of paddy soils[J]. Land Degradation & Development, 2018, 29(10): 3413-3422.
|
| [21] |
孙刚, 房岩, 韩国军, 等. 稻-鱼复合生态系统对水田土壤理化性状的影响[J]. 中国土壤与肥料, 2009(4): 21-24, 47.
|
|
SUN G, FANG Y, HAN G J, et al. Effects of rice-fish integrated ecosystem on physical and chemical properties of paddy soil[J]. Soils and Fertilizers Sciences in China, 2009(4): 21-24, 47.
|
| [22] |
成臣, 汪建军, 程慧煌, 等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报, 2018, 55(1): 247-257.
|
|
CHENG C, WANG J J, CHENG H H, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-rice system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-257.
|
| [23] |
廖育林, 郑圣先, 黄建余, 等. 施钾对湖南主要双季稻区钾肥效应及钾素平衡的影响[J]. 湖南农业大学学报(自然科学版), 2007, 33(6): 754-759.
|
|
LIAO Y L, ZHENG S X, HUANG J Y, et al. Effect of potassium application on its efficiency and balance in double rice regions in Hunan Province[J]. Journal of Hunan Agricultural University (Natural Sciences), 2007, 33(6): 754-759.
|
| [24] |
叶廷红. 钾肥施用量对水稻产量、钾素吸收利用及稻米品质的影响[D]. 武汉: 华中农业大学, 2021.
|
|
YE T H. Effects of potassium application rate nn grain yield, potassium absorbtion and utilization, and quality of rice[D]. Wuhan: Huazhong Agricultural University, 2021.
|
| [25] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
|
| [26] |
高梦颖, 王恒, 张煌, 等. 混合土物理性质试验研究[J]. 防灾减灾工程学报, 2021, 41(6): 1287-1294.
|
|
GAO M Y, WANG H, ZHANG H, et al. Experimental study on the physical properties of mixed clays[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(6): 1287-1294.
|
| [27] |
范富, 徐寿军, 宋桂云, 等. 玉米秸秆造夹层处理对西辽河地区盐碱地改良效应研究[J]. 土壤通报, 2012, 43(3): 696-701.
|
|
FAN F, XU S J, SONG G Y, et al. Studies on improvement of saline and alkali soil with the interlayer of maize straw in west Liaohe Region[J]. Chinese Journal of Soil Science, 2012, 43(3): 696-701.
|
| [28] |
陈远利, 陈义. 永康市不同土壤的氮肥效应试验[J]. 浙江农业科学, 2012, 53(9): 1305-1306.
|
|
CHEN Y L, CHEN Y. Effects of nitrogen fertilizer on different soils in Yongkang City[J]. Journal of Zhejiang Agricultural Sciences, 2012, 53(9): 1305-1306.
|
| [29] |
ZHANG Y, CHEN M, ZHAO Y Y, et al. Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern[J]. Science of the Total Environment, 2021, 788: 147794.
|
| [30] |
KENNEDY T A, NAEEM S, HOWE K M, et al. Biodiversity as a barrier to ecological invasion[J]. Nature, 2002, 417(6889): 636-638.
|
| [31] |
LI P, WU G G, LI Y J, et al. Long-term rice-crayfish-turtle co-culture maintains high crop yields by improving soil health and increasing soil microbial community stability[J]. Geoderma, 2022, 413: 115745.
|
| [32] |
BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233-237.
|
| [33] |
DINI-ANDREOTE F, STEGEN J C, VAN ELSAS J D, et al. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): E1326-E1332.
|
| [34] |
TRIPATHI B M, STEGEN J C, KIM M, et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria[J]. The ISME Journal, 2018, 12(4): 1072-1083.
|
| [35] |
LUAN L, LIANG C, CHEN L J, et al. Coupling bacterial community assembly to microbial metabolism across soil profiles[J]. mSystems, 2020, 5(3).
|
| [36] |
XIONG J B, WU L Y, TU S X, et al. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L[J]. Applied and Environmental Microbiology, 2010, 76(21): 7277-7284.
|