Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (8): 1950-1956.DOI: 10.16178/j.issn.0528-9017.20230614
Previous Articles Next Articles
LI Lijun1,2(), ZHONG Wei1,2, LI Tao1,2,*(
)
Received:
2022-12-09
Online:
2024-08-11
Published:
2024-08-21
CLC Number:
LI Lijun, ZHONG Wei, LI Tao. Application of immobilized microorganism technology on soil remediation of farmland in Xiaoqinling gold mining area[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(8): 1950-1956.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230614
主要参数 | Hg | As | Pb | Cr | Cu | Zn |
---|---|---|---|---|---|---|
最小值 | 0.04 | 5.08 | 21.20 | 40.24 | 13.40 | 44.85 |
最大值 | 42.57 | 13.62 | 3 654.06 | 82.13 | 872.60 | 572.81 |
平均值 | 3.36 | 8.16 | 303.89 | 60.23 | 82.23 | 89.81 |
标准差 | 11.78 | 2.74 | 1 006.60 | 15.54 | 237.49 | 145.18 |
变异系数 | 3.50 | 0.34 | 3.31 | 0.26 | 2.89 | 1.62 |
周边土壤对照值 | 0.08 | 8.19 | 32.62 | 55.99 | 23.93 | 68.74 |
GB 15168-2018限值 | 3.40 | 25.00 | 170.00 | 250.00 | 100.00 | 300.00 |
Table 1
主要参数 | Hg | As | Pb | Cr | Cu | Zn |
---|---|---|---|---|---|---|
最小值 | 0.04 | 5.08 | 21.20 | 40.24 | 13.40 | 44.85 |
最大值 | 42.57 | 13.62 | 3 654.06 | 82.13 | 872.60 | 572.81 |
平均值 | 3.36 | 8.16 | 303.89 | 60.23 | 82.23 | 89.81 |
标准差 | 11.78 | 2.74 | 1 006.60 | 15.54 | 237.49 | 145.18 |
变异系数 | 3.50 | 0.34 | 3.31 | 0.26 | 2.89 | 1.62 |
周边土壤对照值 | 0.08 | 8.19 | 32.62 | 55.99 | 23.93 | 68.74 |
GB 15168-2018限值 | 3.40 | 25.00 | 170.00 | 250.00 | 100.00 | 300.00 |
评价指标 | Hg | As | Pb | Cr | Cu | Zn |
---|---|---|---|---|---|---|
Pi | 0.989 | 0.326 | 1.788 | 0.241 | 0.822 | 0.299 |
P综合 | 8.881 | 0.449 | 15.251 | 0.288 | 6.198 | 1.367 |
Table 2 Evaluation of soil pollution in Xiaoqinling gold mining area and surrounding farmland
评价指标 | Hg | As | Pb | Cr | Cu | Zn |
---|---|---|---|---|---|---|
Pi | 0.989 | 0.326 | 1.788 | 0.241 | 0.822 | 0.299 |
P综合 | 8.881 | 0.449 | 15.251 | 0.288 | 6.198 | 1.367 |
变量 | A固定化混合菌 投加量/% | B处理 温度/℃ | C pH值 |
---|---|---|---|
-1 | 5 | 25 | 4 |
0 | 10 | 30 | 6 |
1 | 15 | 35 | 8 |
Table 3 Response surface methodology factors and levels
变量 | A固定化混合菌 投加量/% | B处理 温度/℃ | C pH值 |
---|---|---|---|
-1 | 5 | 25 | 4 |
0 | 10 | 30 | 6 |
1 | 15 | 35 | 8 |
试验号 | A/% | B/℃ | C | Y (Pb2+去除率)/% |
---|---|---|---|---|
1 | 5 | 25 | 6 | 34.44 |
2 | 15 | 25 | 6 | 41.43 |
3 | 5 | 35 | 6 | 46.16 |
4 | 15 | 35 | 6 | 50.20 |
5 | 5 | 30 | 4 | 35.12 |
6 | 15 | 30 | 4 | 44.46 |
7 | 5 | 30 | 8 | 42.13 |
8 | 15 | 30 | 8 | 47.12 |
9 | 10 | 25 | 4 | 41.98 |
10 | 10 | 35 | 4 | 36.24 |
11 | 10 | 25 | 8 | 37.65 |
12 | 10 | 35 | 8 | 54.17 |
13 | 10 | 30 | 6 | 69.15 |
14 | 10 | 30 | 6 | 72.11 |
15 | 10 | 30 | 6 | 73.78 |
16 | 10 | 30 | 6 | 70.90 |
17 | 10 | 30 | 6 | 74.63 |
Table 4 Response surface methodology design scheme and test results
试验号 | A/% | B/℃ | C | Y (Pb2+去除率)/% |
---|---|---|---|---|
1 | 5 | 25 | 6 | 34.44 |
2 | 15 | 25 | 6 | 41.43 |
3 | 5 | 35 | 6 | 46.16 |
4 | 15 | 35 | 6 | 50.20 |
5 | 5 | 30 | 4 | 35.12 |
6 | 15 | 30 | 4 | 44.46 |
7 | 5 | 30 | 8 | 42.13 |
8 | 15 | 30 | 8 | 47.12 |
9 | 10 | 25 | 4 | 41.98 |
10 | 10 | 35 | 4 | 36.24 |
11 | 10 | 25 | 8 | 37.65 |
12 | 10 | 35 | 8 | 54.17 |
13 | 10 | 30 | 6 | 69.15 |
14 | 10 | 30 | 6 | 72.11 |
15 | 10 | 30 | 6 | 73.78 |
16 | 10 | 30 | 6 | 70.90 |
17 | 10 | 30 | 6 | 74.63 |
项目 | 平方和 | 自由度 | 均方 | F值 | 显著性 |
---|---|---|---|---|---|
Model | 3 478.7 | 9 | 386.52 | 78.56 | ** |
A | 80.39 | 1 | 80.39 | 16.34 | ** |
B | 122.23 | 1 | 122.23 | 24.84 | ** |
C | 67.69 | 1 | 67.69 | 13.76 | ** |
AB | 2.18 | 1 | 2.18 | 0.44 | |
AC | 4.73 | 1 | 4.73 | 0.96 | |
BC | 123.88 | 1 | 123.88 | 25.18 | ** |
A2 | 907.32 | 1 | 907.32 | 184.40 | ** |
B2 | 870.31 | 1 | 870.31 | 176.88 | ** |
C2 | 976.26 | 1 | 976.26 | 198.41 | ** |
Residual | 34.44 | 7 | 4.92 | ||
Lack of Fit | 15.08 | 3 | 5.03 | 1.04 | |
Pure Error | 19.36 | 4 | 4.84 | ||
Cor Total | 3 513.14 | 16 |
Table 5 Variance analysis of regression model
项目 | 平方和 | 自由度 | 均方 | F值 | 显著性 |
---|---|---|---|---|---|
Model | 3 478.7 | 9 | 386.52 | 78.56 | ** |
A | 80.39 | 1 | 80.39 | 16.34 | ** |
B | 122.23 | 1 | 122.23 | 24.84 | ** |
C | 67.69 | 1 | 67.69 | 13.76 | ** |
AB | 2.18 | 1 | 2.18 | 0.44 | |
AC | 4.73 | 1 | 4.73 | 0.96 | |
BC | 123.88 | 1 | 123.88 | 25.18 | ** |
A2 | 907.32 | 1 | 907.32 | 184.40 | ** |
B2 | 870.31 | 1 | 870.31 | 176.88 | ** |
C2 | 976.26 | 1 | 976.26 | 198.41 | ** |
Residual | 34.44 | 7 | 4.92 | ||
Lack of Fit | 15.08 | 3 | 5.03 | 1.04 | |
Pure Error | 19.36 | 4 | 4.84 | ||
Cor Total | 3 513.14 | 16 |
[1] | XIAO L, GUAN D S, PEART M R, et al. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain[J]. Chemosphere, 2017, 185: 868-878. |
[2] | ZHANG P Y, QIN C Z, HONG X, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China[J]. The Science of the Total Environment, 2018, 633: 1136-1147. |
[3] | 余杰. 典型镉污染区长住居民镉暴露与健康影响研究[D]. 北京: 北京交通大学, 2018. |
[4] | 林荩, 梁文静, 焦旸, 等. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 2021, 48(3): 749-763. |
[5] | YANG S, GE W Y, CHEN H H, et al. Investigation of soil and groundwater environment in urban area during post-industrial era: a case study of brownfield in Zhenjiang, Jiangsu Province, China[J]. China Geology, 2019, 3(4): 504-514. |
[6] | 程睿. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报, 2020, 10(2): 280-287. |
[7] | 鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6): 1625-1636. |
[8] | LIU R P, XU Y N, ZHANG J H, et al. Effects of heavy metal pollution on farmland soils and crops: a case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 2020, 3(3):402-410. |
[9] | 朱丹尼, 邹胜章, 周长松, 等. 不同耕作类型下土壤-农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 2021, 48(3): 708-720. |
[10] | WEN D G, ZHANG F C, AN Y H. Support service of geological technology in lifting residents of endemic disease area out of poverty[J]. China Geology, 2020, 3(4): 656-660. |
[11] | 陈桂荣, 曾向东, 黎巍, 等. 金属矿山土壤重金属污染现状及修复技术展望[J]. 矿产保护与利用, 2010(2): 41-44. |
[12] | ACHAL V, PAN X L, ZHANG D Y, et al. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation[J]. Journal of Microbiology and Biotechnology, 2012, 22(2): 244-247. |
[13] | WU S C, WONG C C, SHU W S, et al. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study[J]. International Journal of Phytoremediation, 2011, 13(1): 61-74. |
[14] | 王雷, 刘家军, 翟德高, 等. 小秦岭镰子沟金矿床成矿物质来源与成矿过程[J]. 地质学报, 2018, 92(2): 341-358. |
[15] | 王志坤, 张元国, 巴燕, 等. 小秦岭山前土壤污染现状与修复治理措施[J]. 安徽农业科学, 2012, 40(26): 13032-13034, 13061. |
[16] | 柯海玲, 李贤, 徐友宁, 等. 小秦岭金矿带农田土壤重金属的时空变异趋势及其意义[J]. 地质通报, 2014, 33(8): 1196-1204. |
[17] | 张江华, 徐友宁, 吴耀国. 小秦岭金矿区小麦和玉米重金属的健康风险评价[J]. 地质学报, 2019, 93(2): 501-508. |
[18] | 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618-2018[S]. 北京: 中国标准出版社, 2018. |
[19] | 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721-729. |
[20] | JIANG J, XU R K. Application of crop straw derived biochars to Cu(Ⅱ) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(Ⅱ) immobilization[J]. Bioresource Technology, 2013, 133: 537-545. |
[1] | PAN Kang, XU Yuru, SHEN Weikang, ZHANG Zhi, XU Guangzhi. Comparison of physicochemical properties of gardenia shell pectin extracted by three solutions [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1482-1487. |
[2] | Juanhua TAO, Qiwei SHI, Mingkui ZHANG. Investigation of soil silicon content in safe utilization paddy fields in Zhejiang Province and effect of silicon application on increasing rice yield and decreasing cadmium [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(2): 249-252. |
[3] | . [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(9): 2243-2250. |
[4] | . [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(6): 1545-1552. |
[5] | . [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(4): 881-885. |
[6] | . [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(4): 940-944. |
[7] | . [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(11): 2726-2728. |
[8] | . [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(2): 280-283. |
[9] | . [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 80-82. |
[10] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(11): 2277-2280. |
[11] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(10): 2074-2078. |
[12] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(6): 1116-1118. |
[13] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(5): 878-880. |
[14] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(5): 894-897. |
[15] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(5): 925-927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||