[1] |
JANTAN I, AHMAD W, BUKHARI S N A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials[J]. Frontiers in Plant Science, 2015, 6: 655.
|
[2] |
DI SOTTO A, VITALONE A, DI GIACOMO S. Plant-derived nutraceuticals and immune system modulation: an evidence-based overview[J]. Vaccines, 2020, 8(3): 468.
|
[3] |
TANG H X, ZHAO T W, SHENG Y J, et al. Dendrobium officinale kimura et migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017: 1-19.
|
[4] |
WEI W, FENG L, BAO W R, et al. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale[J]. Journal of Agricultural and Food Chemistry, 2016, 64(4): 881-889.
DOI
URL
|
[5] |
LIU X F, ZHU J, GE S Y, et al. Orally administered Dendrobium officinale and its polysaccharides enhance immune functions in BALB/c mice[J]. Natural Product Communications, 2011, 6(6): 867-870.
|
[6] |
吴维佳, 庞璐, 胡曰红, 等. 铁皮石斛对小鼠免疫功能的影响[J]. 湖南中医杂志, 2012, 28(2): 113-114.
|
[7] |
GONG X Y, JIANG S M, TIAN H Y, et al. Polyphenols in the fermentation liquid of Dendrobium candidum relieve intestinal inflammation in zebrafish through the intestinal microbiome-mediated immune response[J]. Frontiers in Immunology, 2020, 11: 1542.
|
[8] |
XU N, BAI X, LIU Y, et al. The anti-inflammatory immune response in early Trichinella spiralis intestinal infection depends on serine protease inhibitor-mediated alternative activation of macrophages[J]. Journal of Immunology, 2021, 206(5): 963-977.
DOI
URL
|
[9] |
KHARBIKAR B N, CHENDKE G S, DESAI T A. Modulating the foreign body response of implants for diabetes treatment[J]. Advanced Drug Delivery Reviews, 2021, 174: 87-113.
DOI
URL
|
[10] |
NGUYEN R, THIELE C J. Immunotherapy approaches targeting neuroblastoma[J]. Current Opinion in Pediatrics, 2021, 33(1): 19-25.
DOI
URL
|
[11] |
MAIER C, WONG A, WOODHOUSE I, et al. Broad auto-reactive IgM responses are common in critically ill COVID-19 patients[EB/OL]. (2020-12-09)[2021-10-28]. https://www.researchgate.net/publication/348115027_Broad_Auto-Reactive_IgM_Responses_Are_Common_In_Critically_Ill_COVID-19_Patients
|
[12] |
HENSON D, NIEMAN D, DAVIS J, et al. Post-160-km race illness rates and decreases in granulocyte respiratory burst and salivary IgA output are not countered by quercetin ingestion[J]. International Journal of Sports Medicine, 2008, 29(10): 856-863.
DOI
URL
|
[13] |
徐天馥, 贺成功, 杨坤. 基于网络药理学清肺排毒汤治疗新冠肺炎的物质基础及作用机制研究[J]. 天然产物研究与开发, 2020, 32(6): 901-908.
|
[14] |
许冬玉, 许玉龙, 王至婉, 等. 基于网络药理学研究清肺排毒汤治疗新型冠状病毒肺炎的作用机制[J]. 中药药理与临床, 2020, 36(1): 26-32.
|
[15] |
MARTÍNEZ G, MIJARES M R, DE SANCTIS J B. Effects of flavonoids and its derivatives on immune cell responses[J]. Recent Patents on Inflammation & Allergy Drug Discovery, 2019, 13(2): 84-104.
|
[16] |
ZHANG X X, WANG G J, GURLEY E C, et al. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages[J]. PLoS One, 2014, 9(9): e107072.
|
[17] |
COELHO P L C, AMPARO J A O, DA SILVA A B, et al. Apigenin from Croton betulaster Müll restores the immune profile of microglia against glioma cells[J]. Phytotherapy Research, 2019, 33(12): 3191-3202.
DOI
URL
|
[18] |
JUNG G, HENNINGS G, PFEIFER M, et al. Interaction of metal-complexing compounds with lymphocytes and lymphoid cell lines[J]. Molecular Pharmacology, 1983, 23(3): 698-702.
|
[19] |
AGGARWAL B B, GUPTA S C, KIM J H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey[J]. Blood, 2012, 119(3): 651-665.
DOI
URL
|
[20] |
LI P, ZHENG Y, CHEN X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics[J]. Frontiers in Pharmacology, 2017, 8: 460.
|
[21] |
INGLEY E. Src family kinases: regulation of their activities, levels and identification of new pathways[J]. Biochimica et Biophysica Acta, 2008, 1784(1): 56-65.
|
[22] |
FUKUMURA D, KLOEPPER J, AMOOZGAR Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nature Reviews Clinical Oncology, 2018, 15(5): 325-340.
DOI
URL
|
[23] |
SONG G, OUYANG G L, BAO S D. The activation of Akt/PKB signaling pathway and cell survival[J]. Journal of Cellular and Molecular Medicine, 2005, 9(1): 59-71.
DOI
URL
|
[24] |
VAFADARI B, SALAMIAN A, KACZMAREK L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy[J]. Journal of Neurochemistry, 2016, 139(Suppl 2): 91-114.
|
[25] |
CHEN K, LIU J, LIU S X, et al. Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity[J]. Cell, 2017, 170(3): 492-506.
DOI
URL
|
[26] |
ZHANG Y, MAO D L, ROSWIT W T, et al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection[J]. Nature Immunology, 2015, 16(12): 1215-1227.
DOI
URL
|
[27] |
HOOS M D, VITEK M P, RIDNOUR L A, et al. The impact of human and mouse differences in NOS2 gene expression on the brain's redox and immune environment[J]. Molecular Neurodegeneration, 2014, 9: 50.
|
[28] |
LO U, SELVARAJ V, PLANE J M, et al. p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes[J]. Scientific Reports, 2014, 4(1): 1-18.
|
[29] |
XIA W, MAO W J, CHEN R, et al. Epidermal growth factor receptor mutations in resectable non-small cell lung cancer patients and their potential role in the immune landscape[J]. Medical Science Monitor, 2019, 25: 8764-8776.
DOI
URL
|