浙江农业科学 ›› 2023, Vol. 64 ›› Issue (8): 2018-2027.DOI: 10.16178/j.issn.0528-9017.20220738
胡顺强(), 郑恩萍, 赵婷雪, 任诗雅, 李杨, 杨海龙(
)
收稿日期:
2022-07-05
出版日期:
2023-08-11
发布日期:
2023-08-09
通讯作者:
杨海龙,教授,研究方向为食品生物技术研究,E-mail: 00121049@wzu.edu.cn。
作者简介:
胡顺强(1996—),男,湖南岳阳人,硕士,研究方向为微生物学,E-mail: 17862912715@163.com。
基金资助:
Received:
2022-07-05
Online:
2023-08-11
Published:
2023-08-09
摘要:
褐藻是一类大型海藻,在我国海洋资源中占有重要的地位,褐藻中的海带、裙带菜和羊栖菜等藻类中含有大量的活性物质,具有抗氧化、抗肿瘤、抑菌和降血糖等诸多功效。但这些活性物质不稳定,易受到高温、光照、提取方式和干燥条件等因素的影响而发生降解,进而导致活性损失,严重制约其工业生产的发展和推广应用。活性物质的制备是当前褐藻研究中的热点之一,对于这些活性物质的稳态化研究也极具现实意义。本文综述了褐藻中的多糖、多酚、岩藻黄素、甾醇、萜类化合物和多肽等主要活性物质的分离和制备方法,以及国内外关于这些活性物质稳定性和稳态化的研究,以期为后续相关产品的研发和应用提供参考。
中图分类号:
胡顺强, 郑恩萍, 赵婷雪, 任诗雅, 李杨, 杨海龙. 褐藻活性成分制备及其稳定性研究进展[J]. 浙江农业科学, 2023, 64(8): 2018-2027.
[1] | CARROLL A R, COPP B R, DAVIS R A, et al. Marine natural products[J]. Natural Product Reports, 2021, 38(2): 362-413. |
[2] | LÓPEZ-HORTAS L, FLÓREZ-FERNÁNDEZ N, TORRES M D, et al. Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics[J]. Marine Drugs, 2021, 19(10): 552. |
[3] | COUTEAU C, COIFFARD L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources[J]. Marine Drugs, 2020, 18(6): 322. |
[4] | SENTHILKUMAR K, KIM S K. Anticancer effects of fucoidan[M]// Advances in Food and Nutrition Research. Amsterdam: Elsevier, 2014: 195-213. |
[5] | ŚLUSARCZYK J, ADAMSKA E, CZERWIK-MARCINKOWSKA J. Fungi and algae as sources of medicinal and other biologically active compounds: a review[J]. Nutrients, 2021, 13(9): 3178. |
[6] | LIU J, LUTHULI S, YANG Y, et al. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme[J]. Food Science & Nutrition, 2020, 8(10): 5195-5205. |
[7] | LI B, LU F, WEI X J, et al. Fucoidan: structure and bioactivity[J]. Molecules (Basel, Switzerland), 2008, 13(8): 1671-1695. |
[8] | 董学前, 张艳敏, 张永刚, 等. 海带中褐藻糖胶分级纯化及结构分析[J]. 食品工业, 2018, 39(6): 182-186. |
[9] | LEE J B, HAYASHI K, HASHIMOTO M, et al. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (mekabu)[J]. Chemical & Pharmaceutical Bulletin, 2004, 52(9): 1091-1094. |
[10] | ZHAO Y, ZHENG Y Z, WANG J, et al. Fucoidan extracted from Undaria pinnatifida: source for nutraceuticals/functional foods[J]. Marine Drugs, 2018, 16(9): 321. |
[11] | ZHANG R, ZHANG X X, TANG Y X, et al. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: a review[J]. Carbohydrate Polymers, 2020, 228: 115381. |
[12] | SKRIPTSOVA A V, SHEVCHENKO N M, ZVYAGINTSEVA T N, et al. Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta)[J]. Journal of Applied Phycology, 2010, 22(1): 79-86. |
[13] | MAO W J, LI B F, GU Q Q, et al. Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme[J]. Hydrobiologia, 2004, 512(1/2/3): 263-266. |
[14] | YU M, JI Y B, QI Z, et al. Anti-tumor activity of sulfated polysaccharides from Sargassum fusiforme[J]. Saudi Pharmaceutical Journal, 2017, 25(4): 464-468. |
[15] | FAN S R, ZHANG J F, NIE W J, et al. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells[J]. Food and Chemical Toxicology, 2017, 102: 53-62. |
[16] | XIE X, CHEN C, FU X. Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking[J]. LWT-Food Science and Technology, 2021, 138: 110654. |
[17] | ZHANG M Q, YANG R J, YU S H, et al. A novel α-glucosidase inhibitor polysaccharide from Sargassum fusiforme[J]. International Journal of Food Science & Technology, 2022, 57(1): 67-77. |
[18] | SUN Y, CHEN X, LIU S, et al. Preparation of low molecular weight Sargassum fusiforme polysaccharide and its anticoagulant activity[J]. Journal of Oceanology and Limnology, 2018, 36(3): 882-891. |
[19] | SUN Y H, CHEN X L, LIU H, et al. Preparation of new Sargassum fusiforme polysaccharide long-chain alkyl group nanomicelles and their antiviral properties against ALV-J[J]. Molecules (Basel, Switzerland), 2021, 26(11): 3265. |
[20] | CHEN X Y, YOU L J, MA Y X. Influence of UV/H2O2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and RAW 264.7 cells responses[J]. Food and Chemical Toxicology, 2021, 153: 112246. |
[21] | CHEN B J, SHI M J, CUI S, et al. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation[J]. International Journal of Biological Macromolecules, 2016, 92: S0141-S8130(16)30974-6[pii]. |
[22] | CHEN P, YANG S, HU C, et al. Sargassum fusiforme polysaccharide rejuvenat es the small intestine in mice through altering its physiol ogy and gut microbiota composition[J]. Current Molecular Medicine, 2017, 17(5): 350-358. |
[23] | CHEN X Y, LI X, SUN-WATERHOUSE D, et al. Polysaccharides from Sargassum fusiforme after UV/H(2)O(2) degradation effectively ameliorate dextran sulfate sodium-induced colitis[J]. Food & Function, 2021, 12(23): 11747-11759. |
[24] | LI Y T, CHEN B J, WU W D, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. International Journal of Biological Macromolecules, 2018, 118(Pt B): S0141-S8130(18)32565-0[pii]. |
[25] | ACOSTA-ESTRADA B A, GUTIÉRREZ-URIBE J A, SERNA-SALDÍVAR S O. Bound phenolics in foods, a review[J]. Food Chemistry, 2014, 152: 46-55. |
[26] | KADAM S U, TIWARI B K, O'DONNELL C P. Application of novel extraction technologies for bioactives from marine algae[J]. Journal of Agricultural and Food Chemistry, 2013, 61(20): 4667-4675. |
[27] | COTAS J, LEANDRO A, MONTEIRO P, et al. Seaweed phenolics: from extraction to applications[J]. Marine Drugs, 2020, 18(8): 384. |
[28] | KIM K, KIM SS, KHOSRAVI S, et al. Evaluation of Sargassum fusiforme and Ecklonia cava as dietary additives for olive flounder (Paralichthys olivaceus)[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2014, 14(2): 321-300. |
[29] | LIU N, FU X, DUAN D, et al. Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion[J]. Journal of Applied Phycology, 2018, 30(3): 1955-1970. |
[30] | BOGOLITSYN K, DRUZHININA A, KAPLITSIN P, et al. Relationship between radical scavenging activity and polymolecular properties of brown algae polyphenols[J]. Chemical Papers, 2019, 73(10): 2377-2385. |
[31] | DANG T T, VAN VUONG Q, SCHREIDER M J, et al. The effects of drying on physico-chemical properties and antioxidant capacity of the brown alga (Hormosira banksii (Turner) decaisne)[J]. Journal of Food Processing and Preservation, 2017, 41(4): e13025. |
[32] | SHEN P, GU Y, ZHANG C X, et al. Metabolomic approach for characterization of polyphenolic compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum[J]. Foods (Basel, Switzerland), 2021, 10(1): 192. |
[33] | MAURER L H, CAZARIN C B B, QUATRIN A, et al. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: a major role for dietary fiber and fiber-bound polyphenols[J]. Food Research International (Ottawa, Ont), 2019, 123(SEP.):425-439. |
[34] | CHOI Y, LEE S J, KIM H S, et al. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance[J]. Scientific Reports, 2021, 11(1): 24092. |
[35] | SIYA W. Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice[J]. Food Research International, 2021, 147: 110550. |
[36] | KANG K, PARK Y, HWANG H J, et al. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors[J]. Archives of Pharmacal Research, 2003, 26(4): 286-293. |
[37] | HWANG H, CHEN T, NINES R G, et al. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols[J]. International Journal of Cancer, 2006, 119(12): 2742-2749. |
[38] | KUDA T, NISHIZAWA M, TOSHIMA D, et al. Antioxidant and anti-norovirus properties of aqueous acetic acid macromolecular extracts of edible brown macroalgae[J]. LWT, 2021, 141: 110942. |
[39] | ZENG K W, GU M Y. Annual advances of integrative pharmacology in 2019[J]. Traditional Medicine Research, 2020, 5(2): 74-82. |
[40] | KIM T E, SON H J, LIM D W, et al. Memory-enhancing effects of Ishige foliacea extract: in vitro and in vivo study[J]. Journal of Food Biochemistry, 2020, 44(4): e13162. |
[41] | PADUS D, ROCHA E, GARGIULO D, et al. Bioactive compounds from brown seaweeds: Phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer[J]. Phytochemistry Letters, 2015, 14: 91-98. |
[42] | 丁建姿, 李长青, 姬广磊, 等. 岩藻黄质的提取及其稳定性初探[J]. 食品工业, 2021, 42(11): 178-183. |
[43] | XIAO X H, SI X X, YUAN Z Q, et al. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography[J]. Journal of Separation Science, 2012, 35(17): 2313-2317. |
[44] | BAE M, KIM M B, PARK Y K, et al. Health benefits of fucoxanthin in the prevention of chronic diseases[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2020, 1865(11):158618. |
[45] | D'ORAZIO N, GEMELLO E, ALESSANDRA GAMMONE M, et al. Fucoxantin: a treasure from the sea[J]. Marine Drugs, 2012, 10(3): 604-616. |
[46] | HAN YU RAN, ALI M Y, WOO M H, et al. Anti-diabetic and anti-inflammatory potential of the edible brown alga Hizikia fusiformis[J]. Journal of Food Biochemistry, 2015, 39(4): 417-428. |
[47] | SUGIURA Y, KINOSHITA Y, USUI M, et al. The suppressive effect of a marine carotenoid, fucoxanthin, on mouse ear swelling through regulation of activities and mRNA expression of inflammation-associated enzymes[J]. Food Science and Technology Research, 2016, 22(2): 227-234. |
[48] | HITOE S, SHIMODA H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects[J]. Functional Foods in Health and Disease, 2017, 7(4): 246. |
[49] | GUO B B, ZHOU Y H, LIU B, et al. Lipid-lowering bioactivity of microalga Nitzschia laevis extract containing fucoxanthin in murine model and carcinomic hepatocytes[J]. Pharmaceuticals (Basel, Switzerland), 2021, 14(10): 1004. |
[50] | 孙瑜, 丁国芳, 徐银峰. 海洋褐藻羊栖菜(Sargassum fusiforme)中马尾藻甾醇、岩藻甾醇的分类纯化及抗菌、抗氧化活性研究[J]. 海洋与湖沼, 2017, 48(3): 640-646. |
[51] | KAPETANOVIC R, SLADIC D, POPOV S, et al. Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides[J]. Journal of the Serbian Chemical Society, 2005, 70(12): 1395-1400. |
[52] | ZHANG X L, WANG C, CHEN Z, et al. Development and validation of quantitative (1)H NMR spectroscopy for the determination of total phytosterols in the marine seaweed Sargassum[J]. Journal of Agricultural and Food Chemistry, 2016, 64(31): 6228-6232. |
[53] | 张艾玲, 梁惠, 逄丹, 等. 海藻萜类化合物对大鼠急性酒精性肝损伤的保护作用研究[J]. 中国食品学报, 2008, 8(3): 23-27. |
[54] | RAFIQUZZAMAN S M, KIM E Y, KIM Y R, et al. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model[J]. International Journal of Biological Macromolecules, 2013, 62. |
[55] | 李伟, 邬丽君, 肖妍君, 等. 海带蛋白的提取和活性研究[J]. 水产科学, 2008, 27(10): 530-532. |
[56] | 毕秋芸. 裙带菜多肽的制备及其抗氧化活性的研究[J]. 中国调味品, 2019, 44(5): 104-110. |
[57] | ADMASSU H, GASMALLA M A A, YANG R J, et al. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties[J]. Journal of Food Science, 2018, 83(1): 6-16. |
[58] | KADAM S, TIWARI B, O'DONNELL C. Extraction, structure and biofunctional activities of laminarin from brown algae[J]. International Journal of Food Science & Technologyl, 2015, 50(1): 24-31. |
[59] | 吴娟, 欧志荣, 李昭蓉, 等. 稀酸提取羊栖菜多糖的结构及其抗氧化特性研究[J]. 福建农业学报, 2019, 34(7): 842-851. |
[60] | YU P, CHAO X. Statistics-based optimization of the extraction process of kelp polysaccharide and its activities[J]. Carbohydrate Polymers, 2013, 91(1): 356-362. |
[61] | 陈家兰, 林芳花, 曹泽粼, 等. 羊栖菜多糖提取工艺的均匀设计法优选及含量测定[J]. 时珍国医国药, 2021, 32(1): 54-57. |
[62] | 张锐, 曾冬云, 龚兴国, 等. 羊栖菜褐藻糖胶的分离纯化和组成性质研究[J]. 中国食品学报, 2006, 6(5): 22-27. |
[63] | 冯建岭, 刘海燕, 王丽丽, 等. 裙带菜蛋白的提取工艺研究[J]. 食品研究与开发, 2016, 37(19): 51-54. |
[64] | 庞庭才, 胡上英, 范和良, 等. 羊栖菜蛋白质提取及功能性研究[J]. 中国酿造, 2017, 36(9): 148-152. |
[65] | 何传辉, 何传波, 魏好程, 等. 羊栖菜多酚提取工艺优化[J]. 食品安全质量检测学报, 2015, 6(8): 2896-2902. |
[66] | 吕成林, 汪秋宽, 宋悦凡, 等. 羊栖菜多酚的提取及纯化工艺研究[J]. 食品工业科技, 2014, 35(22): 231-235, 240. |
[67] | AIRANTHI M K W A, SASAKI N, IWASAKI S, et al. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver[J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 4156-4163. |
[68] | 尹宗美, 王丹, 石佳, 等. 羊栖菜藻渣中岩藻黄质制备技术及工艺优化[J]. 食品研究与开发, 2017, 38(15): 134-138. |
[69] | 李红艳, 王颖, 刘天红, 等. 铜藻岩藻黄素提取及纯化工艺研究[J]. 生物技术进展, 2020, 10(2): 205-213. |
[70] | NIE J, CHEN D, YE J, et al. Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents[J]. Ultrason Sonochem, 2021, 77(8): 105671. |
[71] | 刘春平, 王韦, 程卓, 等. 超高效液相色谱法测定羊栖菜中岩藻甾醇的含量[J]. 理化检验-化学分册, 2017, 53(5): 548-551. |
[72] | WANG T, ZHAO H Y, BI Y G, et al. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme[J]. Journal of Food Science, 2021, 86(3): 977-986. |
[73] | 蔡圣宝, 李美奇, 易俊洁. 响应面法优化羊栖菜褐藻多酚提取工艺[J]. 大连工业大学学报, 2020, 39(5): 334-338. |
[74] | 苏艳玲, 张谨华. 超声辅助乙醇提取海带多酚工艺优化及抗氧化活性[J]. 中国调味品, 2020, 45(6): 174-180. |
[75] | 金旭东, 王俊淇, 曹朝清, 等. 循环超声提取羊栖菜中岩藻黄质的工艺研究[J]. 食品工业科技, 2021, 42(17): 170-178. |
[76] | 唐志红, 吕家森, 贾晓晨, 等. 羊栖菜多糖微波提取工艺的研究[J]. 时珍国医国药, 2011, 22(10): 2440-2442. |
[77] | 王君虹, 郜海燕, 葛林梅, 等. 微波辅助提取羊栖菜多酚的工艺研究[J]. 浙江农业学报, 2013, 25(6): 1368-1372. |
[78] | 孔秋红, 张瑞芬, 曾新安, 等. 不同方法提取的羊栖菜多糖理化性质及益生活性[J]. 现代食品科技, 2021, 37(5): 123-129. |
[79] | 吴凤娜, 贾秀春, 李迎秋, 等. 海带蛋白提取工艺研究[J]. 山东轻工业学院学报(自然科学版), 2012, 26(1): 5-8. |
[80] | BILLAKANTI J M, CATCHPOLE O J, FENTON T A, et al. Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol[J]. Process Biochemistry, 2013, 48(12): 1999-2008. |
[81] | 刘楠, 曾帅, 孙永, 等. 响应面法优化酶辅助提取羊栖菜多酚工艺及其抗氧化性研究[J]. 食品安全质量检测学报, 2017, 8(1): 62-70. |
[82] | 杨晓雪, 董学前, 张永刚, 等. 复合酶法高效提取海带中褐藻糖胶[J]. 食品工业科技, 2017, 38(6): 142-146. |
[83] | 刘萌, 刘光明, 刘翼翔, 等. 生物酶法制备海带多酚的工艺研究[J]. 集美大学学报(自然科学版), 2017, 22(1): 21-28. |
[84] | 王俊, 柯珂, 覃佑康, 等. 羊栖菜褐藻多糖的提取及抗肿瘤活性[J]. 化工技术与开发, 2020, 49(7): 26-31. |
[85] | LI C Y, WANG C S, WANG S F, et al. Optimization of ultrasonic-assisted extraction technology of Sargassum fusiforme polysaccharides and evaluation of their antioxidant activity[J]. Food Science and Technology Research, 2013, 19(2): 157-162. |
[86] | 吕美云. 微波辅助法提取羊栖菜多糖[J]. 食品研究与开发, 2012, 33(12): 79-81. |
[87] | LIU J, WU S Y, CHEN L, et al. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans[J]. International Journal of Biological Macromolecules, 2020, 155. |
[88] | ZHENG Q W, JIA R B, OU Z R, et al. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions[J]. International Journal of Biological Macromolecules, 2022, 194. |
[89] | 吴燕燕, 张婉, 李来好, 等. 海藻中抗氧化、保湿功能活性物质的研究进展[J]. 海洋科学, 2015, 39(9): 138-142. |
[90] | URIBE E, VEGA-GÁLVEZ A, VARGAS N, et al. Phytochemical components and amino acid profile of brown seaweed Durvillaea antarctica as affected by air drying temperature[J]. Journal of Food Science and Technology, 2018, 55(12): 4792-4801. |
[91] | 陆东和, 陈庆华, 陈慎, 等. 干燥方法对海带多糖得率及其部分理化性质的影响[J]. 福建农业学报, 2020, 35(4): 450-455. |
[92] | CHEN P C, HE D, ZHANG Y, et al. Sargassum fusiforme polysaccharides activate antioxidant defense by promoting Nrf2-dependent cytoprotection and ameliorate stress insult during aging[J]. Food & Function, 2016, 7(11): 4576-4588. |
[93] | 何粉霞, 聂小伟, 陈志兵, 等. 海带多糖酶解辅助提取工艺的响应面优化及其稳定性研究[J]. 保鲜与加工, 2020, 20(5): 159-165, 173. |
[94] | SUN B, WANG W J, HE Z B, et al. Improvement of stability of tea polyphenols: a review[J]. Current Pharmaceutical Design, 2018, 24(29): 3410-3423. |
[95] | 周艳华. 超声波法提取荞麦多酚及其稳定性分析[J]. 食品科技, 2021, 46(4): 188-194. |
[96] | NIE J, CHEN D, LU Y, et al. Effects of various blanching methods on fucoxanthin degradation kinetics, antioxidant activity, pigment composition, and sensory quality of Sargassum fusiforme[J]. LWT-Food Science and Technology, 2021, 143(10): 111179. |
[97] | 赵子硕, 李红, 苗祚庥, 等. 不同干燥方式、存储温度对羊栖菜中岩藻黄素稳定性的影响[J]. 天然产物研究与开发, 2019, 31(4): 689-695. |
[98] | QUAN J, KIM SM, PAN CH, et al. Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin-gum arabic coacervate shell[J]. Food Research International, 2013, 50(1): 31-37. |
[99] | 杜亚朋, 王美, 李璐遥, 等. 基于化合物稳定性探讨炮制对含环烯醚萜类成分中药药性及功效影响的研究进展[J]. 中草药, 2021, 52(16): 5039-5051. |
[100] | 庞敏, 姜绍通, 潘丽军, 等. 不同加热方式对脂质基质中甾醇稳定性及其抗氧化性能的影响[J]. 食品科学, 2012, 33(21): 39-42. |
[101] | BUŠIĆ A, KOMES D, BELŠČAK-CVITANOVIĆ A, et al. The potential of combined emulsification and spray drying techniques for encapsulation of polyphenols from rosemary(Rosmarinus officinalis L.) leaves[J]. Food Technology and Biotechnology, 2018, 56(4): 494-505. |
[102] | ÁLVAREZ-HENAO M V, SAAVEDRA N, MEDINA S, et al. Microencapsulation of lutein by spray-drying: characterization and stability analyses to promote its use as a functional ingredient[J]. Food Chemistry, 2018, 256. |
[103] | NOVIENDRI D, JASWIR I, TAHER M, et al. Fabrication of fucoxanthin-loaded microsphere(F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation[J]. Journal of Oleo Science, 2016, 65(8): 641-653. |
[104] | 郑姣妮, 廖荣强, 杨波. 基于环糊精自组装的纳米药物与基因载体研究进展[J]. 中国材料进展, 2019, 38(2): 148-154. |
[105] | MA C M, ZHAO X H. Depicting the non-covalent interaction of whey proteins with galangin or genistein using the multi-spectroscopic techniques and molecular docking[J]. Foods (Basel, Switzerland), 2019, 8(9): 360. |
[106] | RENARD C, WATRELOT A, BOURVELLEC C L. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion[J]. Trends in Food Science & Technology, 2017, 60(2): 43-51. |
[107] | PADAYACHEE A, NETZEL G, NETZEL M, et al. Binding of polyphenols to plant cell wall analogues-Part 2: Phenolic acids[J]. Food Chemistry, 2012, 135(4):2287-2292. |
[108] | 干福良, 卞希良, 夏凤清, 等. 短直链淀粉-多酚复合纳米颗粒的制备及性质研究[J]. 中国食品添加剂, 2020, 31(11): 77-82. |
[109] | 姬雨雪, 郑丽丽, 杨旸, 等. β-乳球蛋白多酚三配体复合物纳米颗粒的制备与表征[J]. 食品科学, 2022, 43(2): 18-26. |
[110] | LE BOURVELLEC C. RENARD C M G C. Interactions between polyphenols and macromolecules: quantification methods and mechanisms[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(3): 213-248. |
[111] | LI Y T, HE D, LI B, et al. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods[J]. Trends in Food Science & Technology, 2021, 110: 470-482. |
[112] | HUYNH MAI C, THANH DIEP T, LE T T T, et al. Advances in colloidal dispersions: a review[J]. Journal of Dispersion Science and Technology, 2020, 41(4): 479-494. |
[113] | 乔亮智, 杜开峰. 天然多糖微球的制备及功能应用[J]. 化工进展, 2021, 40(8): 4305-4313. |
[114] | VON STASZEWSKI M, PIZONES RUIZ-HENESTROSA V M, PILOSOF A M R. Green tea polyphenols-β-lactoglobulin nano complexes: Interfacial behavior, emulsification and oxidation stability of fish oil[J]. Food Hydrocolloids, 2014, 35: 505-511. |
[1] | 戚亭, 裴华, 郭利攀, 汪腊云, 杨鲁琼, 朱晓薇. 正交实验法优化4种茶叶中茶多酚的提取工艺研究[J]. 浙江农业科学, 2023, 64(8): 1977-1982. |
[2] | 姚凯勇, 陈斌丹, 蔡杰, 任大喜. 天然抑菌剂对禽肉制品的作用机制及应用研究进展[J]. 浙江农业科学, 2023, 64(8): 1999-2005. |
[3] | 刘晓迪, 景延秋, 钟莉. 施用氨基酸复合肥对中烟100烤烟生长及内在品质的影响[J]. 浙江农业科学, 2023, 64(6): 1470-1474. |
[4] | 王小秋, 仇亮, 翟彩娇, 宋益民, 程玉静, 刘水东. 黄秋葵多糖提取、分离纯化及结构分析方法研究进展[J]. 浙江农业科学, 2023, 64(3): 694-704. |
[5] | 孙雨晴, 吴伟杰, 钟石, 霍进喜, 朱俭勋, 郜海燕, 李有贵. 桑黄子实体中多酚含量测定的方法学研究[J]. 浙江农业科学, 2022, 63(9): 2117-2120. |
[6] | 周威杰, 罗培娟, 成纪予. 利用竹屑代料栽培灵芝的试验[J]. 浙江农业科学, 2022, 63(7): 1469-1471. |
[7] | 郑生宏, 柴红玲, 何卫中, 李继光, 董瑞霞, 周慧娟. 间作白三叶草对茶树地上部生长及氮素含量的影响[J]. 浙江农业科学, 2022, 63(7): 1530-1533. |
[8] | 陈银华, 吴华芬, 曹鹏飞, 周斌雄, 徐伟忠. 结香多糖的提取工艺[J]. 浙江农业科学, 2022, 63(3): 592-598. |
[9] | 应震, 周庄, 付双彬, 徐婉, 杨燕萍. 浙江省野生开唇兰主要药用成分分析[J]. 浙江农业科学, 2022, 63(3): 495-496. |
[10] | 扈晓佳, 董思萱. 葡萄阿萨伊果混合饮料对脂多糖诱导斑马鱼炎症模型的保护作用[J]. 浙江农业科学, 2022, 63(10): 2415-2418. |
[11] | 张文婷, 孙健, 徐飞, 朱红, 岳瑞雪, 张毅, 马晨, 钮福祥. 超声辅助离子液体混合溶剂提取甘薯叶片多酚物质[J]. 浙江农业科学, 2022, 63(1): 16-19. |
[12] | 高秋美, 任丽华, 米真如, 孟庆峰, 董秋颖, 田北京, 韩金龙, 王志芬. 间作模式下密度对多花黄精产量及质量的影响[J]. 浙江农业科学, 2022, 63(1): 56-59. |
[13] | 戴杨鑫, 周潮滨, 郑卫东, 阮松林, 冯晓宇. 2种不同表型人工种植於术的差异性研究[J]. 浙江农业科学, 2022, 63(1): 60-62. |
[14] | 冉宇晴, 陆海滨, 姚湛江, 高丽, 南春容, 金月玲. 羊栖菜多糖提取条件优化[J]. 浙江农业科学, 2021, 62(9): 1857-1859. |
[15] | 孙佳秀, 夏鹏国, 梁宗锁. 荷叶的药理功效及功能食品开发[J]. 浙江农业科学, 2021, 62(9): 1874-1881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||