浙江农业科学 ›› 2023, Vol. 64 ›› Issue (9): 2243-2250.DOI: 10.16178/j.issn.0528-9017.20230590
收稿日期:
2022-05-30
出版日期:
2023-09-11
发布日期:
2023-09-14
通讯作者:
周文文(1982—),女,山东淄博人,副教授,博士,从事微生物代谢与食品安全研究工作,E-mail:vivianzhou11@zju.edu.cn。
作者简介:
沈谦君(2002—),女,浙江绍兴人,本科,从事微生物代谢与食品安全研究工作,E-mail:1370020759@qq.com。
基金资助:
Received:
2022-05-30
Online:
2023-09-11
Published:
2023-09-14
摘要:
近年来,超声波因具有高效、低碳等优势,成为非热杀菌技术领域的研究热点之一,许多研究也证实了其在控制果蔬中致病微生物,保障果蔬质量安全方面的良好效能。但超声单独作用的效果有限,与其他技术协同使用则可以有效改善这一状况。某些气体(O3、CO2、ClO2等)具有广谱杀菌效果,并且价格低廉、易于获得,与超声波协同使用后,既能有效提升对果蔬的杀菌效果,还能减少有毒物质的产生。本文综述了超声波空化效应导致的声穿孔、声化学、声致发光效应,重点阐述了超声联合气体协同杀菌技术在果蔬食品安全控制中的研究进展,旨在为进一步研究基于超声协同气体杀菌技术来控制果蔬的质量安全并揭示协同机制提供参考。
中图分类号:
沈谦君, 潘佳能, 孙晋跃, 周文文. 超声协同气体杀菌技术在果蔬产品质量安全控制中的应用[J]. 浙江农业科学, 2023, 64(9): 2243-2250.
[1] | RUSSO P, CAPOZZI V. Editorial: microbiological safety of foods[J]. Foods, 2020, 10(1): 53. |
[2] | KIM C, PAO S. Utilizing kitchen steamers to inactivate Listeria monocytogenes and Salmonella enterica on whole cantaloupe melons[J]. Journal of Food Safety, 2019, 39(4): e12653. |
[3] | ZHANG H Y, SERWAH BOATENG N A, NGOLONG NGEA G L, et al. Unravelling the fruit microbiome: the key for developing effective biological control strategies for postharvest diseases[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5): 4906-4930. |
[4] | SHENG L N, LI X R, WANG L X. Photodynamic inactivation in food systems: a review of its application, mechanisms, and future perspective[J]. Trends in Food Science & Technology, 2022, 124: 167-181. |
[5] | LEE S H, CHOI W, JUN S. Conventional and emerging combination technologies for food processing[J]. Food Engineering Reviews, 2016, 8(4): 414-434. |
[6] | HUANG M S, ZHANG M, BHANDARI B. Recent development in the application of alternative sterilization technologies to prepared dishes: a review[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(7): 1188-1196. |
[7] | CAO X H, ZHANG M, MUJUMDAR A S, et al. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying[J]. Ultrasonics Sonochemistry, 2018, 40: 333-340. |
[8] | LI X, FARID M. A review on recent development in non-conventional food sterilization technologies[J]. Journal of Food Engineering, 2016, 182: 33-45. |
[9] | REZK A R, AHMED H, RAMESAN S, et al. High frequency sonoprocessing: a new field of cavitation-free acoustic materials synthesis, processing, and manipulation[J]. Advanced Science, 2020, 8(1): 2001983. |
[10] | YAMASHITA T, ANDO K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: role of cavitation bubbles as physical cleaning agents[J]. Ultrasonics Sonochemistry, 2019, 52: 268-279. |
[11] | ZUPANC M, PANDUR Ž, STEPIŠNIK PERDIH T, et al. Effects of cavitation on different microorganisms: the current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research[J]. Ultrasonics Sonochemistry, 2019, 57: 147-165. |
[12] | LI J, AHN J, LIU D H, et al. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy[J]. Applied and Environmental Microbiology, 2016, 82(6): 1828-1837. |
[13] | DENG C X, SIELING F, PAN H, et al. Ultrasound-induced cell membrane porosity[J]. Ultrasound in Medicine & Biology, 2004, 30(4): 519-526. |
[14] | STRIDE E, PORTER C, PRIETO A G, et al. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields[J]. Ultrasound in Medicine & Biology, 2009, 35(5): 861-868. |
[15] | KANG D C, JIANG Y H, XING L J, et al. Inactivation of Escherichia coli O157:H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef[J]. Food Research International, 2017, 102: 717-727. |
[16] | MCNEIL P L. Repairing a torn cell surface: make way, lysosomes to the rescue[J]. Journal of Cell Science, 2002, 115(Pt5): 873-879. |
[17] | MIKI H, FUNATO Y. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species[J]. The Journal of Biochemistry, 2012, 151(3): 255-261. |
[18] | TOMASZEWSKI R. A comparative study of citations to chemical encyclopedias in scholarly articles: Kirk-Othmer Encyclopedia of Chemical Technology and Ullmann's Encyclopedia of Industrial Chemistry[J]. Scientometrics, 2018, 117(1): 175-189. |
[19] | WU Q H, NI X H. ROS-mediated DNA methylation pattern alterations in carcinogenesis[J]. Current Drug Targets, 2015, 16(1): 13-19. |
[20] | SALLMYR A, FAN J S, RASSOOL F V. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair[J]. Cancer Letters, 2008, 270(1): 1-9. |
[21] | DAI J M, BAI M, LI C Z, et al. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry[J]. Trends in Food Science & Technology, 2020, 105: 211-222. |
[22] | BEGUIN E, SHRIVASTAVA S, DEZHKUNOV N V, et al. Direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 19913-19919. |
[23] | KAWASAKI H, KUMAR S, LI G, et al. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters[J]. Chemistry of Materials, 2014, 26(9): 2777-2788. |
[24] | GAITAN D F, TESSIEN R A. Sonoluminescence from transient cavitation at high pressures in water and acetone[J]. The Journal of the Acoustical Society of America, 2007, 121(5): 3181. |
[25] | DMITRIEVA V A, TYUTEREVA E V, VOITSEKHOVSKAJA O V. Singlet oxygen in plants: generation, detection, and signaling roles[J]. International Journal of Molecular Sciences, 2020, 21(9): 3237. |
[26] | HABEEB RAHMAN A P, MISRA A J, DAS S, et al. Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles[J]. Chemical Engineering Journal, 2018, 336: 476-488. |
[27] | 李银汇, 王文骏, 吕瑞玲, 等. 超声波联合杀菌剂杀菌的研究进展[J]. 食品科学, 2022, 43(19): 348-358. |
[28] | NAGARKATTI M G. Ozone in water treatment: application and engineering[J]. Journal of Environmental Quality, 1991, 20(4): 881-882. |
[29] | YARGEAU V, DANYLO F. Removal and transformation products of ibuprofen obtained during ozone- and ultrasound-based oxidative treatment[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2015, 72(3): 491-500. |
[30] | YADAV M, GOLE V L, SHARMA J, et al. Biologically treated industrial wastewater disinfection using the synergy of low-frequency ultrasound and H2O2/O3[J]. Journal of Environmental Health Science & Engineering, 2022, 20(2): 889-898. |
[31] | MARYAM A, ANWAR R, MALIK A U, et al. Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits[J]. Journal of Food Measurement and Characterization, 2021, 15(2): 1437-1451. |
[32] | ADAY M S, CANER C. Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life[J]. LWT-Food Science and Technology, 2014, 57(1): 344-351. |
[33] | TAIYE MUSTAPHA A, ZHOU C S, WAHIA H, et al. Sonozonation: enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato[J]. Ultrasonics Sonochemistry, 2020, 64: 105059. |
[34] | SUN Y T, WU Z X, ZHANG Y Y, et al. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce[J]. Ultrasonics Sonochemistry, 2022, 83: 105931. |
[35] | TRAORE M B, SUN A D, GAN Z L, et al. Antimicrobial capacity of ultrasound and ozone for enhancing bacterial safety on inoculated shredded green cabbage (Brassica oleracea var. capitata)[J]. Canadian Journal of Microbiology, 2020, 66(2): 125-137. |
[36] | SIDDIQUE Z, MALIK A U, ASI M R, et al. Sonolytic-ozonation technology for sanitizing microbial contaminants and pesticide residues from spinach (Spinacia oleracea L.) leaves, at household level[J]. Environmental Science and Pollution Research International, 2021, 28: 52913-52924. |
[37] | SIDDIQUE Z, MALIK A U. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): a comparative review[J]. Journal of Food Safety, 2022, 42(5): e13003. |
[38] | AYDAR A Y, AYDıN T, KARAIZ A, et al. Effect of ultrasound assisted cleaning on pesticide removal and quality characteristics of Vitis vinifera leaves[J]. Ultrasonics Sonochemistry, 2023, 92: 106279. |
[39] | FAN X D, ZHANG W L, XIAO H Y, et al. Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce[J]. RSC Advances, 2015, 5(57): 45622-45630. |
[40] | SIDDIQUE Z, MALIK A U, ASI M R, et al. Impact of sonolytic ozonation (O3/US) on degradation of pesticide residues in fresh vegetables and fruits: case study of Faisalabad, Pakistan[J]. Ultrasonics Sonochemistry, 2021, 79: 105799. |
[41] | DENG L Z, MUJUMDAR A S, PAN Z L, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2481-2508. |
[42] | OFORI I, MADDILA S, LIN J, et al. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism[J]. Journal of Water Process Engineering, 2018, 26: 46-54. |
[43] | HE Q, LIU D H, ASHOKKUMAR M, et al. Antibacterial mechanism of ultrasound against Escherichia coli: alterations in membrane microstructures and properties[J]. Ultrasonics Sonochemistry, 2021, 73: 105509. |
[44] | LIAO X Y, LI J, SUO Y J, et al. Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus[J]. Food Science and Human Wellness, 2018, 7(1): 102-109. |
[45] | MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11): 5800-5808. |
[46] | MILLAN-SANGO D, SAMMUT E, VAN IMPE J F, et al. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide[J]. LWT-Food Science and Technology, 2017, 78: 90-96. |
[47] | AYYILDIZ O, SANIK S, ILERI B. Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency[J]. Ultrasonics Sonochemistry, 2011, 18(2): 683-688. |
[48] | WU W J, GAO H Y, CHEN H J, et al. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on shelf-life and nutritional quality of Bok choy (Brassica chinensis)[J]. LWT, 2019, 101: 757-763. |
[49] | CHEN Z, ZHU C H. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.)[J]. Postharvest Biology and Technology, 2011, 61(2/3): 117-123. |
[50] | ORTUÑO C, MARTÍNEZ-PASTOR M T, MULET A, et al. Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages[J]. The Journal of Supercritical Fluids, 2012, 63: 8-15. |
[51] | DA SILVA M A, DE ARAUJO A P, DE SOUZA FERREIRA J, et al. Inactivation of Bacillus subtilis and Geobacillus stearothermophilus inoculated over metal surfaces using supercritical CO2 process and nisin[J]. The Journal of Supercritical Fluids, 2016, 109: 87-94. |
[52] | HOSSAIN M S, RAHMAN N N N A, BALAKRISHNAN V, et al. Mathematical modeling of Enterococcus faecalis, Escherichia coli, and Bacillus sphaericus inactivation in infectious clinical solid waste by using steam autoclaving and supercritical fluid carbon dioxide sterilization[J]. Chemical Engineering Journal, 2015, 267: 221-234. |
[53] | 柴利, 贺稚非, 谢晓红, 等. 超临界CO2在肉及肉制品杀菌中的应用研究进展[J]. 肉类研究, 2022, 36(2): 46-52. |
[54] | KOUBAA M, MHEMDI H, FAGES J. Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology[J]. The Journal of Supercritical Fluids, 2018, 134: 71-79. |
[55] | PANIAGUA-MARTÍNEZ I, MULET A, GARCÍA-ALVARADO M A, et al. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 362-370. |
[56] | ORTUÑO C, MARTÍNEZ-PASTOR M T, MULET A, et al. Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae[J]. Food Research International, 2013, 51(2): 474-481. |
[57] | MICHELINO F, ZAMBON A, VIZZOTTO M T, et al. High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander[J]. Journal of CO2 Utilization, 2018, 24: 516-521. |
[58] | GOMEZ-GOMEZ A, BRITO-DE LA FUENTE E, GALLEGOS C, et al. Non-thermal pasteurization of lipid emulsions by combined supercritical carbon dioxide and high-power ultrasound treatment[J]. Ultrasonics Sonochemistry, 2020, 67: 105138. |
[59] | FERRENTINO G, KOMES D, SPILIMBERGO S. High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: a microbial and physicochemical study[J]. Food and Bioprocess Technology, 2015, 8(12): 2368-2382. |
[60] | OLIVEIRA M, ABADIAS M, USALL J, et al. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables-A review[J]. Trends in Food Science & Technology, 2015, 46(1): 13-26. |
[61] | 章潇天, 张慜, 过志梅. 超声波-气调联合处理对番茄、丝瓜混合贮藏保鲜效果的影响[J]. 食品与生物技术学报, 2020, 39(12): 62-70. |
[62] | 张福平, 陈蔚辉, 郑楚萍, 等. 超声波结合气调包装对番石榴贮藏品质与生理的影响[J]. 南方农业学报, 2017, 48(3): 493-498. |
[63] | ZHANG X T, ZHANG M, DEVAHASTIN S, et al. Effect of combined ultrasonication and modified atmosphere packaging on storage quality of pakchoi (Brassica chinensis L.)[J]. Food and Bioprocess Technology, 2019, 12(9): 1573-1583. |
[64] | CHEN L B, FAN K. Influence of ultrasound treatment in combination with modified atmosphere on microorganisms and quality attributes of fresh-cut lettuce[J]. International Journal of Food Science & Technology, 2021, 56(10): 5242-5249. |
[65] | FAN K, ZHANG M, JIANG F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: influence on microbial inhibition and storage quality[J]. Ultrasonics Sonochemistry, 2019, 54: 162-170. |
[66] | RADULOVIĆ N S, BLAGOJEVIĆ P D, STOJANOVIĆ-RADIĆ Z Z, et al. Antimicrobial plant metabolites: structural diversity and mechanism of action[J]. Current Medicinal Chemistry, 2013, 20(7): 932-952. |
[67] | HAMMERBACHER A, COUTINHO T A, GERSHENZON J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles[J]. Plant, Cell & Environment, 2019, 42(10): 2827-2843. |
[68] | LAMBERT R J W, SKANDAMIS P N, COOTE P J, et al. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol[J]. Journal of Applied Microbiology, 2001, 91(3): 453-462. |
[69] | BENNIS S, CHAMI F, CHAMI N, et al. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol[J]. Letters in Applied Microbiology, 2004, 38(6): 454-458. |
[70] | ZERINGUE H J, BROWN R L, NEUCERE J N, et al. Relationships between C6-C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production[J]. Journal of Agricultural and Food Chemistry, 1996, 44(2): 403-407. |
[71] | LEE G, KIM Y, KIM H, et al. Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts[J]. International Journal of Food Microbiology, 2018, 265: 49-54. |
[72] | SHAO X F, WANG H F, XU F, et al. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit[J]. Postharvest Biology and Technology, 2013, 77: 94-101. |
[73] | JUNAID P M, DAR A H, DASH K K, et al. Advances in seed oil extraction using ultrasound assisted technology: a comprehensive review[J]. Journal of Food Process Engineering, 2023, 46(6): e14192. |
[74] | HU W B, YANG Z W, WANG W J. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja: HPLC profile, antimicrobial and antioxidant activity[J]. Industrial Crops and Products, 2019, 130: 615-626. |
[75] | ABDELKEBIR R, ALCÁNTARA C, FALCÓ I, et al. Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts[J]. Innovative Food Science & Emerging Technologies, 2019, 52: 189-196. |
[76] | DING Q Z, SHEIKH A R, GU X Y, et al. Chinese Propolis: Ultrasound-assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison[J]. Food Science & Nutrition, 2020, 9(1): 313-330. |
[77] | BANOŽIĆ M, ALADIĆ K, JERKOVIĆ I, et al. Volatile organic compounds of tobacco leaves versus waste (scrap, dust, and midrib): extraction and optimization[J]. Journal of the Science of Food and Agriculture, 2021, 101(5): 1822-1832. |
[1] | 陈香华, 孙书阳, 陈亚丽, 李美霞, 周长勇, 曹凯歌, 王晓飞, 巨亚雯, 钱新. 药剂组合混用防治小麦后期病害效果研究[J]. 浙江农业科学, 2023, 64(9): 2229-2232. |
[2] | 李军, 傅水江, 方建民, 黄成. 浙江省生猪养殖业温室气体排放估算及减排对策探讨[J]. 浙江农业科学, 2023, 64(9): 2296-2300. |
[3] | 厉晓腊, 方鸣, 陈官菊, 刘又高, 蔡瑞杭, 王根锷, 柴一秋. 几种杀菌剂对番茄青枯病菌的室内抑菌研究[J]. 浙江农业科学, 2023, 64(4): 905-908. |
[4] | 周靖涵. 定海区蔬菜质量安全检测分析及对策[J]. 浙江农业科学, 2023, 64(3): 677-680. |
[5] | 徐伟东, 陆强. 杀菌剂不同处理方式对直播晚稻恶苗病的防治[J]. 浙江农业科学, 2023, 64(2): 428-430. |
[6] | 王洁, 赵燕昊, 方卫东, 俞炜. 桐庐县农产品质量安全追溯体系建设现状、问题及对策[J]. 浙江农业科学, 2023, 64(1): 29-33. |
[7] | 邓涛, 杨华, 方晓斌, 肖英平, 汪雯, 吕文涛, 吴振, 吉小凤. 果蔬及其制品中真菌毒素污染和管控策略研究[J]. 浙江农业科学, 2023, 64(1): 9-14. |
[8] | 刘惠林, 金献军, 张谷平. 基于监管视角下的浙江大米质量追溯系统的应用[J]. 浙江农业科学, 2022, 63(9): 2093-2097. |
[9] | 杜元, 张群祥. 农产品质量安全信息需求对消费者网络信息搜寻行为的影响[J]. 浙江农业科学, 2022, 63(9): 2166-2170. |
[10] | 赵明宏, 俞春英, 江建铭. 药用白及生态高效种植技术[J]. 浙江农业科学, 2022, 63(8): 1699-1701. |
[11] | 林媚, 王天玉, 平新亮, 姚周麟. 浙江柑橘果品农药残留状况分析[J]. 浙江农业科学, 2022, 63(6): 1351-1355. |
[12] | 周建昌, 褚剑峰, 马秋玲, 卢春霞, 郭瑞. 绍兴基地蔬菜质量安全状况和对策建议[J]. 浙江农业科学, 2022, 63(5): 1064-1067. |
[13] | 程静雯, 李阿根, 陈瑞, 张斌. 4种杀菌剂防治油菜菌核病的效果[J]. 浙江农业科学, 2022, 63(4): 777-778. |
[14] | 赵慧宇, 王嵘, 胡佳卉, 张启, 毕婷, 唐志伟. 大棚杨梅农药监管与使用建议[J]. 浙江农业科学, 2022, 63(3): 549-551. |
[15] | 徐继根, 张顺昌, 吴昊, 胡丽鹏. 草莓白粉病不同防治药剂筛选试验[J]. 浙江农业科学, 2022, 63(3): 558-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||