[1] |
PENG D L, JIANG R, PENG H, et al. Soybean cyst nematodes: a destructive threat to soybean production in China[J]. Phytopathology Research, 2021, 3(1): 19.
|
[2] |
WRATHER J A, KOENNING S R. Estimates of disease effects on soybean yields in the United States 2003 to 2005[J]. Journal of Nematology, 2006, 38(2): 173-180.
|
[3] |
吴伟. 大豆胞囊线虫病的发生与防治[J]. 农村科技, 2011(1): 30.
|
[4] |
石红利. 大豆孢囊线虫的生物学特性及诱导抗性研究[D]. 杭州: 浙江大学, 2013.
|
[5] |
NIBLACK T L, ARELLI P R, NOEL G R, et al. A revised classification scheme for genetically diverse populations of Heterodera glycines[J]. Journal of Nematology, 2002, 34(4): 279-288.
|
[6] |
练云, 卢为国. 大豆抗SCN机制及抗病相关基因研究进展[J]. 中国油料作物学报, 2013, 35(6): 727-732.
|
[7] |
于宝泉, 高林. 大豆胞囊线虫病发生和防治研究进展[J]. 大豆科技, 2012(3): 29-33.
|
[8] |
ICHINOHE M. Studies on the morphology and ecology of the soy bean nematode, Heterodera glycines, in Japan[J]. Report of the Hokkaido National Agricultural Experiment Station, 1955.
|
[9] |
WINSTEAD N N, SKOTLAND C B, SASSERr J N. Soybean cyst nematode in North Carolina[J]. Plant Disease Reporter, 1955.
|
[10] |
YAN G P, BAIDOO R. Current research status of Heterodera glycines resistance and its implication on soybean breeding[J]. Engineering, 2018, 4(4): 226-242.
|
[11] |
宋美静, 朱晓峰, 王东, 等. 我国大豆主产区大豆胞囊线虫群体分布及致病性分化研究[J]. 大豆科学, 2016, 35(4): 630-636.
|
[12] |
孟凡立, 于瑾瑶, 李春杰, 等. 东北地区大豆孢囊线虫病发生和防控技术研究进展[J]. 东北农业大学学报, 2022, 53(1): 87-94.
|
[13] |
PENG D L, PENG H, WU D Q, et al. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia China[J]. Plant Disease, 2016, 100(1): 229.
|
[14] |
WANG D, DUAN Y X, WANG Y Y, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China[J]. Plant Disease, 2015, 99(6): 893.
|
[15] |
张悦. 浅谈大豆胞囊线虫的防治[J]. 现代化农业, 2015(7): 10.
|
[16] |
曹广禄. 大豆胞囊线虫病的发病规律及常见的防治方法[J]. 新农业, 2021(8): 50-51.
|
[17] |
ANAND S C. Identification of additional soybean germplasm with resistance to race 3 of the soybean cyst nematode[J]. Plant Disease, 1984, 68(1): 593.
|
[18] |
KADAM S, VUONG T D, QIU D, et al. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding[J]. Plant Science, 2016, 242: 342-350.
|
[19] |
刘冰. 大豆胞囊线虫病的发生条件及防治措施[J]. 现代农业科技, 2011(3): 186.
|
[20] |
孔祥超, 李红梅, 耿甜, 等. 大豆种质资源对大豆孢囊线虫3号和4号生理小种的抗性鉴定[J]. 植物保护, 2012, 38(1): 146-150.
|
[21] |
段玉玺, 周博, 陈立杰, 等. 抗大豆胞囊线虫3号生理小种(SCN3)核心种质代表性分析[J]. 大豆科学, 2008, 27(3): 366-372.
|
[22] |
魏荷, 练云, 李金英, 等. 抗胞囊线虫2号生理小种大豆种质的评价和利用[J]. 植物遗传资源学报, 2022, 23(2): 450-459.
|
[23] |
练云, 周扬, 雷晨芳, 等. 一种提高实验重复性的大豆胞囊线虫抗性鉴定方法[J]. 浙江农业科学, 2022, 63(10): 2359-2363, 2367.
|
[24] |
潘凤娟, 韩晓增, 邹文秀. 春大豆长期连作对土壤线虫群落结构和食物网的影响[J]. 大豆科学, 2017, 36(4): 606-613.
|
[25] |
李文娇, 杨殿林, 赵建宁, 等. 长期连作和轮作对农田土壤生物学特性的影响研究进展[J]. 中国农学通报, 2015, 31(3): 173-178.
|
[26] |
GRABAU Z J, VETSCH J A, CHEN S Y. Effects of fertilizer, nematicide, and tillage on plant-parasitic nematodes and yield in corn and soybean[J]. Agronomy Journal, 2017, 109(4): 1651-1662.
|
[27] |
姜伟, 张海英, 李金鸿, 等. 5种药剂对大豆孢囊线虫孵化及2龄幼虫室内毒力的影响[J]. 甘肃农业大学学报, 2021, 56(4): 36-42.
|
[28] |
宋洁, 许艳丽, 姚钦, 等. 尿素对大豆胞囊线虫的抑制作用[J]. 大豆科学, 2012, 31(5): 784-788.
|
[29] |
许艳丽, 鲁建聪, 宋洁. 寄生真菌发酵液对大豆胞囊线虫3号生理小种毒力和防效研究[J]. 大豆科学, 2020, 39(4): 595-604.
|
[30] |
王超, 郭坚华, 席运官, 等. 拮抗细菌在植物病害生物防治中应用的研究进展[J]. 江苏农业科学, 2017, 45(18): 1-6.
|
[31] |
许艳丽, 鲁建聪, 宋洁, 等. 混合寄生真菌发酵液对大豆胞囊线虫的毒力和防效[J]. 土壤与作物, 2018, 7(2): 248-256.
|
[32] |
GOULD F, BROWN Z S, KUZMA J. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance?[J]. Science, 2018, 360(6390): 728-732.
|
[33] |
陈秀菊, 李惠霞, 徐志鹏, 等. 3株生防真菌的杀线虫活性及种类鉴定[J]. 大豆科学, 2019, 38(4): 576-583.
|
[34] |
SIKANDAR A, ZHANG M Y, WANG Y Y, et al. In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode)[J]. Scientific Reports, 2020, 10: 8342.
|
[35] |
金贺, 夏诗宁, 王旭东, 等. 微紫青霉(Penicillium janthinellum)Snef1650诱导大豆胞囊线虫防治效果及GmCAD应答响应[J]. 中国油料作物学报, 2023, 45(3): 583-591.
|
[36] |
LIU K, NEWMAN M, MCINROY J A, et al. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases[J]. Phytopathology, 2017, 107(8): 928-936.
|
[37] |
孙华, 段玉玺, 陈立杰, 等. 大豆根际促生菌Sneb207对不同种类线虫毒性的研究[J]. 大豆科学, 2009, 28(4): 683-686.
|
[38] |
周园园, 郭永霞, 段玉玺, 等. 巨大芽孢杆菌Sneb207诱导大豆抗胞囊线虫病的防效及光合响应[J]. 大豆科学, 2020, 39(4): 605-611.
|
[39] |
GAO H J, QI G F, YIN R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine[J]. Scientific Reports, 2016, 6: 28756.
|
[40] |
佚名. 先正达生物杀线剂Clariva PN获巴西登记[J]. 农药, 2017, 56(9): 654.
|
[41] |
张超群, 戴建荣. 放线菌的研究现况与展望[J]. 中国病原生物学杂志, 2019, 14(1): 110-113, 122.
|
[42] |
陈井生, 陈立杰, 刘大伟, 等. 放线菌Snea49的种类鉴定及对胞囊线虫的活性评价[J]. 大豆科学, 2010, 29(4): 663-665.
|
[43] |
项鹏, 郝建国, 张武, 等. 大豆胞囊线虫生防放线菌的田间防效评估及其鉴定[J]. 中国油料作物学报, 2017, 39(2): 234-238.
|
[44] |
ROSSKOPF E N, CHELLEMI D O, KOKALIS-BURELLE N, et al. Alternatives to methyl bromide: a Florida perspective[J]. APSnet Feature Articles, 2005, 6(1): 19.
|
[45] |
于海侠. 浅谈大豆胞囊线虫病害的防治[J]. 黑龙江科技信息, 2012(10): 226.
|
[46] |
WU H Y, LUO M, ZHANG L Y, et al. Nematicidal activity of fosthiazate against soybean cyst nematode Heterodera glycines[J]. Journal of Nematology, 2019, 51: 1-9.
|
[47] |
COOK D E, LEE T G, GUO X L, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.
|
[48] |
LIU S M, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492: 256-260.
|
[49] |
LEE T G, KUMAR I, DIERS B W, et al. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus[J]. Molecular Ecology, 2015, 24(8): 1774-1791.
|
[50] |
AFZAL A J, NATARAJAN A, SAINI N, et al. The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots[J]. Plant Physiology, 2009, 151(3): 1264-1280.
|
[51] |
BUTLER K J, CHEN S Y, SMITH J M, et al. Soybean resistance locus Rhg1 confers resistance to multiple cyst nematodes in diverse plant species[J]. Phytopathology, 2019, 109(12): 2107-2115.
|
[52] |
汪瑞. α-SNAP互作蛋白在大豆与大豆孢囊线虫互作中的机制研究[D]. 武汉: 华中农业大学, 2019.
|
[53] |
韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24.
|
[54] |
SHI Z, LIU S M, NOE J, et al. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J]. BMC Genomics, 2015, 16(1): 314.
|
[55] |
WU X Y, ZHOU G C, CHEN Y X, et al. Soybean cyst nematode resistance emerged via artificial selection of duplicated serine hydroxymethyltransferase genes[J]. Frontiers in Plant Science, 2016, 7: 998.
|
[56] |
HEIL S G, VAN DER PUT N M, WAAS E T, et al. Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects?[J]. Molecular Genetics and Metabolism, 2001, 73(2): 164-172.
|
[57] |
KIM M, HYTEN D L, BENT A F, et al. Fine mapping of the SCN resistance locus rhg1-b from PI 88788[J]. The Plant Genome, 2010, 3(2): 81-89.
|
[58] |
练云, 李海朝, 李金英, 等. 利用KASP标记筛选含rhg1和Rhg4位点的大豆抗病资源[J]. 植物遗传资源学报, 2021, 22(2): 399-406.
|