浙江农业科学 ›› 2023, Vol. 64 ›› Issue (10): 2349-2354.DOI: 10.16178/j.issn.0528-9017.20230224
黄玉韬1(), 梅高甫1, 吴华平2, 阮晓丽3, 朱叶峰4, 冯春炜4, 曹栋栋1,*(
)
收稿日期:
2023-01-23
出版日期:
2023-10-11
发布日期:
2023-10-24
通讯作者:
曹栋栋(1983—),男,浙江宁波人,副研究员,博士,研究方向为种子科学与工程,E-mail:作者简介:
黄玉韬(1991—),男,浙江平阳人,助理研究员,博士,研究方向为种子科学与技术,E-mail:hytcsy@zju.edu.cn。
基金资助:
Received:
2023-01-23
Online:
2023-10-11
Published:
2023-10-24
摘要:
高温热害已成为限制水稻产量与品质的重要因素之一,然而灌浆期高温对水稻种子发育的影响及其内在机制仍缺乏深入研究与总结。本文综述了灌浆期高温对水稻种子发育的影响,其中主要包括水稻种子物理特性、种子萌发、淀粉代谢、多胺、活性氧系统等内容,并阐述了水稻种子高温制种的防治措施,以期为水稻产业中制种安全提供理论支撑与实践指导。
中图分类号:
黄玉韬, 梅高甫, 吴华平, 阮晓丽, 朱叶峰, 冯春炜, 曹栋栋. 水稻种子发育过程中耐热性研究进展[J]. 浙江农业科学, 2023, 64(10): 2349-2354.
[1] | ZHANG Q, CHEN Q H, WANG S L, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014, 7(1): 24. |
[2] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[3] | SREENIVASULU N, BUTARDO V M Jr, MISRA G, et al. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress[J]. Journal of Experimental Botany, 2015, 66(7): 1737-1748. |
[4] | ZHAO C, LIU B, PIAO S L, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[5] | 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展[J]. 应用生态学报, 2020, 31(8): 2817-2830. |
[6] | 田小海, 罗海伟, 周恒多, 等. 中国水稻热害研究历史、进展与展望[J]. 中国农学通报, 2009, 25(22): 166-168. |
[7] | PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975. |
[8] | BYLER R K, GERRISH J B, BROOK R C. Data acquisition and control system for experimental thin-layer drying study[J]. Computers and Electronics in Agriculture, 1989, 3(3): 225-241. |
[9] | DE STORME N, GEELEN D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms[J]. Plant, Cell & Environment, 2014, 37(1): 1-18. |
[10] | BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant, Cell & Environment, 2008, 31(1): 11-38. |
[11] | KESAVAN M, SONG J T, SEO H S. Seed size: a priority trait in cereal crops[J]. Physiologia Plantarum, 2013, 147(2): 113-120. |
[12] | WANG K J, LI X H, YAN M F. Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb, Zucc.)[J]. Plant Systematics and Evolution, 2014, 300(7): 1729-1739. |
[13] | WANG Z F, WANG J F, BAO Y M, et al. Quantitative trait loci analysis for rice seed vigor during the germination stage[J]. Journal of Zhejiang University SCIENCE B, 2010, 11(12): 958-964. |
[14] | DRECCER M F, SCHAPENDONK A H C M, SLAFER G A, et al. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield[J]. Plant and Soil, 2000, 220(1): 189-205. |
[15] | PRASAD P V V, DJANAGUIRAMAN M, PERUMAL R, et al. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration[J]. Frontiers in Plant Science, 2015, 6: 820. |
[16] | LIU Q H, WU X, MA J Q, et al. Effects of high air temperature on rice grain quality and yield under field condition[J]. Agronomy Journal, 2013, 105(2): 446-454. |
[17] | YAMAKAWA H, HIROSE T, KURODA M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray[J]. Plant Physiology, 2007, 144(1): 258-277. |
[18] | YAMAKAWA H, HAKATA M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(5): 795-809. |
[19] | MORITA S, YONEMARU J I, TAKANASHI J I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.)[J]. Annals of Botany, 2005, 95(4): 695-701. |
[20] | FU Y Y, GU Q Q, DONG Q, et al. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism[J]. Molecules, 2019, 24(7): 1395. |
[21] | GUTTERMAN Y. Genotypic and phenotypic germination survival strategies of ecotypes and annual plant species in the Negev Desert of Israel[M]// Seed biology:advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. Wallingford: CABI, 2011: 389-399. |
[22] | EGLI D B, TEKRONY D M, HEITHOLT J J, et al. Air temperature during seed filling and soybean seed germination and vigor[J]. Crop Science, 2005, 45(4): 1329-1335. |
[23] | THOMAS J M G, PRASAD P V V, BOOTE K J, et al. Seed composition, seedling emergence and early seedling vigour of red kidney bean seed produced at elevated temperature and carbon dioxide[J]. Journal of Agronomy and Crop Science, 2009, 195(2): 148-156. |
[24] | DORNBOS JR D L, MCDONALD JR M B. Mass and composition of developing soybean seeds at five reproductive growth Stages1[J]. Crop Science, 1986, 26(3): 624-630. |
[25] | BENZING D H, DAVIDSON E A. Oligotrophic tillandsia circinnata schlecht (Bromeliaceae): an assessment of its patterns of mineral allocation and reproduction[J]. American Journal of Botany, 1979, 66(4): 386-397. |
[26] | KAUSHAL N, BHANDARI K, SIDDIQUE K H M, et al. Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance[J]. Cogent Food & Agriculture, 2016, 2(1): 1134380. |
[27] | HAMPTON J G, BOELT B, ROLSTON M P, et al. Effects of elevated CO2 and temperature on seed quality[J]. The Journal of Agricultural Science, 2013, 151(2): 154-162. |
[28] | CHEN M, FU Y Y, MOU Q S, et al. Spermidine induces expression of stress associated proteins (SAPs) genes and protects rice seed from heat stress-induced damage during grain-filling[J]. Antioxidants, 2021, 10(10): 1544. |
[29] | MADAN P, JAGADISH S V K, CRAUFURD P Q, et al. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice[J]. Journal of Experimental Botany, 2012, 63(10): 3843-3852. |
[30] | 张桂莲, 廖斌, 武小金, 等. 高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响[J]. 植物生理学报, 2014, 50(12): 1840-1844. |
[31] | 张晓. 杂交水稻种子淀粉、蛋白质、脂肪含量对其活力影响的初步研究[D]. 杭州: 浙江农林大学, 2014. |
[32] | LIN C J, LI C Y, LIN S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-10552. |
[33] | 韦克苏, 程方民, 张其芳, 等. 高温胁迫下水稻胚乳淀粉分支酶各同工型基因的表达特征[J]. 中国水稻科学, 2009, 23(1): 19-24. |
[34] | LIU J C, ZHAO Q, ZHOU L J, et al. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties[J]. Journal of Cereal Science, 2017, 76: 42-55. |
[35] | YAO D P, WU J, LUO Q H, et al. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch[J]. Food Chemistry, 2020, 310: 125817. |
[36] | WANG J C, XU H, ZHU Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[37] | FU F F, XUE H W. Coexpression analysis identifies rice starch regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology, 2010, 154(2): 927-938. |
[38] | 王丰, 程方民, 刘奕, 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化[J]. 作物学报, 2006, 32(1): 25-29. |
[39] | 滕中华, 智丽, 吕俊, 等. 灌浆期高温对水稻光合特性、内源激素和稻米品质的影响[J]. 生态学报, 2010, 30(23): 6504-6511. |
[40] | LIU J H, WANG W, WU H, et al. Polyamines function in stress tolerance: from synthesis to regulation[J]. Frontiers in Plant Science, 2015, 6: 827. |
[41] | TAO Y J, WANG J, MIAO J, et al. The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield[J]. Plant Physiology, 2018, 178(4): 1522-1536. |
[42] | SANG Q Q, SHAN X, AN Y H, et al. Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings' response to high-temperature stress[J]. Frontiers in Plant Science, 2017, 8: 120. |
[43] | TANG S, ZHANG H X, LI L, et al. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period[J]. Functional Plant Biology: FPB, 2018, 45(9): 911-921. |
[44] | SAGOR G H M, BERBERICH T, TAKAHASHI Y, et al. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes[J]. Transgenic Research, 2013, 22(3): 595-605. |
[45] | CHENG L, ZOU Y J, DING S L, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress[J]. Journal of Integrative Plant Biology, 2009, 51(5): 489-499. |
[46] | ZHAO Q, ZHOU L J, LIU J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[47] | 张桂莲, 张顺堂, 肖浪涛, 等. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响[J]. 中国水稻科学, 2014, 28(2): 155-166. |
[48] | 曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3): 512-521. |
[49] | 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J]. 作物学报, 2006, 32(9): 1306-1310. |
[50] | 谢晓金, 李秉柏, 朱红霞, 等. 抽穗期高温对水稻叶片光合特性和干物质积累的影响[J]. 中国农业气象, 2012, 33(3): 457-461. |
[51] | 张桂莲, 张顺堂, 肖浪涛, 等. 花期高温胁迫对水稻花药生理特性及花粉性状的影响[J]. 作物学报, 2013, 39(1): 177-183. |
[52] | 刘维, 李祎君, 吕厚荃. 早稻抽穗开花至成熟期气候适宜度对气候变暖与提前移栽的响应[J]. 中国农业科学, 2018, 51(1): 49-59. |
[53] | 陈新光, 王华, 邹永春, 等. 气候变化背景下广东早稻播期的适应性调整[J]. 生态学报, 2010, 30(17): 4748-4755. |
[54] | 张彬, 郑建初, 黄山, 等. 抽穗期不同灌水深度下水稻群体与大气的温度差异[J]. 应用生态学报, 2008, 19(1): 87-92. |
[55] | 王华, 杜尧东, 杜晓阳, 等. 灌浆期不同时间喷水降温对超级稻“玉香油占”产量和品质的影响[J]. 生态学杂志, 2017, 36(2): 413-419. |
[56] | 闫川, 丁艳锋, 王强盛, 等. 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响[J]. 作物学报, 2008, 34(12): 2176-2183. |
[57] | 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6): 591-602. |
[58] | 缪乃耀, 唐设, 陈文珠, 等. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究[J]. 南京农业大学学报, 2017, 40(1): 1-10. |
[59] | 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(1): 107-120. |
[60] | SHAHID M, NAYAK A K, TRIPATHI R, et al. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages[J]. International Journal of Biometeorology, 2018, 62(8): 1375-1387. |
[61] | FAHAD S, HUSSAIN S, SAUD S, et al. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature[J]. Frontiers in Plant Science, 2016, 7: 1250. |
[62] | FAHAD S, HUSSAIN S, SAUD S, et al. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures[J]. PLoS One, 2016, 11(7): e0159590. |
[63] | 符冠富, 张彩霞, 杨雪芹, 等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647. |
[64] | 杨军, 蔡哲, 刘丹, 等. 高温下喷施水杨酸和磷酸二氢钾对中稻生理特征和产量的影响[J]. 应用生态学报, 2019, 30(12): 4202-4210. |
[65] | FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1): 245. |
[66] | ZHAO Q, ZHOU L J, LIU J C, et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports, 2018, 37(5): 741-757. |
[1] | 李欣禾, 乔婉霞, 李林, 陆林峰. 水稻病虫害智能测报和防控研究[J]. 浙江农业科学, 2023, 64(9): 2214-2219. |
[2] | 许唯, 董卉, 陆学峰, 许永超, 王维艳, 李罕琼, 黄耀亮. 纳米农药防治水稻病虫害的田间药效试验[J]. 浙江农业科学, 2023, 64(9): 2220-2224. |
[3] | 贾佳, 王斌, 陈新, 叶凯. 东阳元胡-水稻轮作系统价值特点与保护策略[J]. 浙江农业科学, 2023, 64(9): 2128-2131. |
[4] | 沈月明, 周彬, 何凯波, 张红梅, 沈亚强, 王保君, 杨海龙, 权新华, 程旺大. 水稻-长梗白菜轮作对土壤养分、活性炭、氮库的影响及其效益分析[J]. 浙江农业科学, 2023, 64(9): 2177-2180. |
[5] | 王伟, 张渭章, 舒庆尧, 富昊伟, 黄建中, 谭瑗瑗, 汪庆. 水稻新品种浙大嘉锡优610特征特性及制种技术[J]. 浙江农业科学, 2023, 64(8): 1840-1844. |
[6] | 赵财宝, 陈苗苗, 张光锰, 艾星梅. 不同处理方式对黄果朱砂根顽拗性种子萌发的影响[J]. 浙江农业科学, 2023, 64(8): 1931-1934. |
[7] | 王哉, 蒋英健, 谢留杰, 王敏天, 黄丛林, 陈嘉乐, 阮文晓. 分子标记辅助选育含Pigm抗稻瘟病基因的水稻新品系[J]. 浙江农业科学, 2023, 64(8): 1945-1948. |
[8] | 陈佑源, 姚坚, 湛立伟, 张世玺, 尚子帅, 侯凡, 李树森. 优质常规粳稻浙禾622的多种病害抗性基因分子分析[J]. 浙江农业科学, 2023, 64(7): 1768-1773. |
[9] | 费冰雁, 赵川, 徐柳静, 沈芳勤, 李建强. 平湖市常规稻麦周年轮作磷肥减量方案探究试验[J]. 浙江农业科学, 2023, 64(7): 1648-1651. |
[10] | 陆芳, 姜春月, 孙勰, 李月明, 王节文. 水稻嘉67的水溶硅肥与锌肥双因素协同初步应用试验[J]. 浙江农业科学, 2023, 64(7): 1652-1655. |
[11] | 王芸, 方小稳, 沈泓. 不同类型缓释肥对东阳地区晚稻产量的影响[J]. 浙江农业科学, 2023, 64(7): 1656-1659. |
[12] | 费维, 张浩, 顾卡咪. 聚氨酯包膜型缓释肥减量减次对岱山县单季稻产量的影响[J]. 浙江农业科学, 2023, 64(7): 1660-1662. |
[13] | 宋肖琴, 陈福明, 陈国安, 罗玉博, 肖林林. 镉污染下镉低累积水稻筛选及其吸收积累特征[J]. 浙江农业科学, 2023, 64(7): 1667-1671. |
[14] | 周海平, 马国华, 周成, 王成豹, 荀飞琼, 周慧. 优质两系杂交中籼新组合深两优689的选育和应用[J]. 浙江农业科学, 2023, 64(7): 1709-1714. |
[15] | 程顺, 蒋文枰, 刘士力, 郑建波, 迟美丽, 刘一诺, 杭小英, 彭苗, 李飞. 红螯螯虾虾塘种稻初探[J]. 浙江农业科学, 2023, 64(6): 1399-1403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||