浙江农业科学 ›› 2022, Vol. 63 ›› Issue (12): 2942-2948.DOI: 10.16178/j.issn.0528-9017.20220104
董俊杰1(), 曾宇翔2, 富昊伟1, 张馨月1, 杨长登2, 李友发1,*(
)
收稿日期:
2022-02-15
出版日期:
2022-12-11
发布日期:
2022-12-09
通讯作者:
李友发
作者简介:
李友发(1977—),男,湖南永州人,高级农艺师,学士,从事杂交水稻遗传育种研究工作,E-mail:liyoufa66@sina.com。基金资助:
Received:
2022-02-15
Online:
2022-12-11
Published:
2022-12-09
摘要:
水稻纹枯病是世界性三大病害之一。近年来,水稻纹枯病在我国稻区大面积发生,对水稻生产造成了严重的威胁。水稻纹枯病抗性资源的发掘、抗性QTL定位以及抗性相关基因的利用是抗病育种的基础。本文简单介绍了水稻纹枯病的危害以及病原菌的分类与特性,对水稻纹枯病菌的致病机制、抗性种质资源的鉴定、抗性QTL定位以及抗性相关基因的最新研究进展进行了总结,并对未来水稻纹枯病的研究进行了展望,旨在为今后水稻纹枯病抗性育种提供重要参考。
中图分类号:
董俊杰, 曾宇翔, 富昊伟, 张馨月, 杨长登, 李友发. 水稻纹枯病研究进展[J]. 浙江农业科学, 2022, 63(12): 2942-2948.
染色体 | QTL | 标记区间或最近的标记 | 定位群体 | LOD | 变异解释率 | 参考文献 |
---|---|---|---|---|---|---|
1 | qshb1.1 | RM151-RM12253 | BPT-5204×ARC10531 | 10.70 | 10.99 | [ |
1 | qShB1-2 | — | BHA×DGWG | 5.71 | 6.00 | [ |
2 | qSBR2-2 | RM110-osr14 | HH1B×RSB03 | 5.20 | 5.30 | [ |
2 | qsbr_2.1 | RM8254-RM8252 | MCR10277×Cocodrie | 29.70 | 8.00 | [ |
2 | qsbr_2.2 | RM3857-RM5404 | MCR10277×Cocodrie | 37.80 | 10.00 | [ |
2 | qSB2.1 | RM279-RM71 | Lemont×Jasmine 85 | 3.70 | 6.80 | [ |
2 | qSB2.2 | RM221-RM112 | Lemont×Jasmine 85 | 3.60 | 6.50 | [ |
2 | qShB4 | — | BHA×DGWG | 3.71 | 3.82 | [ |
4 | qDR-4 | RM1155-RM5757 | HH1B×RSB02 | 2.71 | — | [ |
6 | qShB6-mc | RM3183-RM541 | wild1×O.sativaBengal | 3.30 | 5.80 | [ |
6 | qShB6(wild1) | RM3431-RM3183 | wild1×O.sativaBengal | 7.80 | 13.30 | [ |
6 | qShB6(wild 2) | RM253-RM3431 | wild2×O.sativaBengal | 21.20 | 32.00 | [ |
7 | qSB7 | RM5711-RM2 | Lemont×Jasmine 85 | 4.00 | 7.10 | [ |
7 | qshb7.1 | RM81-RM6152 | BPT-5204×ARC10531 | 8.80 | 10.52 | [ |
7 | qshb7.2 | RM10-RM21693 | BPT-5204×ARC10531 | 6.70 | 9.72 | [ |
7 | qSBL7 | D760-RM248 | Yangdao4×Lemont | 3.12 | 4.82 | [ |
8 | qshb8.1 | RM21792-RM310 | BPT-5204×ARC10531 | 4.20 | 21.76 | [ |
9 | qSBR9 | RM23869-RM3769 | HH1B×RSB03 | 5.00 | 11.90 | [ |
9 | qsbr_9.1 | RM24708-RM3823 | MCR10277×Cocodrie | 53.30 | 15.00 | [ |
9 | qSB9 | RM215-RM245 | Lemont×Jasmine 85 | 5.40 | 8.55 | [ |
9 | qSB9TQ | CY-85 and Y86 | Teqing×Lemont | — | — | [ |
11 | qSB-11LE | Z22-27C-Z23-33C | Teqing×Lemont | — | — | [ |
12 | qsbr_12.1 | RM3747-RM27608 | MCR10277×Cocodrie | 49.10 | 14.00 | [ |
12 | qSBD12-2 | RM1246-D1252 | Yangdao4×Lemont | 3.74 | 11.95 | [ |
表1 在不同群体中鉴定的纹枯病抗性QTL
染色体 | QTL | 标记区间或最近的标记 | 定位群体 | LOD | 变异解释率 | 参考文献 |
---|---|---|---|---|---|---|
1 | qshb1.1 | RM151-RM12253 | BPT-5204×ARC10531 | 10.70 | 10.99 | [ |
1 | qShB1-2 | — | BHA×DGWG | 5.71 | 6.00 | [ |
2 | qSBR2-2 | RM110-osr14 | HH1B×RSB03 | 5.20 | 5.30 | [ |
2 | qsbr_2.1 | RM8254-RM8252 | MCR10277×Cocodrie | 29.70 | 8.00 | [ |
2 | qsbr_2.2 | RM3857-RM5404 | MCR10277×Cocodrie | 37.80 | 10.00 | [ |
2 | qSB2.1 | RM279-RM71 | Lemont×Jasmine 85 | 3.70 | 6.80 | [ |
2 | qSB2.2 | RM221-RM112 | Lemont×Jasmine 85 | 3.60 | 6.50 | [ |
2 | qShB4 | — | BHA×DGWG | 3.71 | 3.82 | [ |
4 | qDR-4 | RM1155-RM5757 | HH1B×RSB02 | 2.71 | — | [ |
6 | qShB6-mc | RM3183-RM541 | wild1×O.sativaBengal | 3.30 | 5.80 | [ |
6 | qShB6(wild1) | RM3431-RM3183 | wild1×O.sativaBengal | 7.80 | 13.30 | [ |
6 | qShB6(wild 2) | RM253-RM3431 | wild2×O.sativaBengal | 21.20 | 32.00 | [ |
7 | qSB7 | RM5711-RM2 | Lemont×Jasmine 85 | 4.00 | 7.10 | [ |
7 | qshb7.1 | RM81-RM6152 | BPT-5204×ARC10531 | 8.80 | 10.52 | [ |
7 | qshb7.2 | RM10-RM21693 | BPT-5204×ARC10531 | 6.70 | 9.72 | [ |
7 | qSBL7 | D760-RM248 | Yangdao4×Lemont | 3.12 | 4.82 | [ |
8 | qshb8.1 | RM21792-RM310 | BPT-5204×ARC10531 | 4.20 | 21.76 | [ |
9 | qSBR9 | RM23869-RM3769 | HH1B×RSB03 | 5.00 | 11.90 | [ |
9 | qsbr_9.1 | RM24708-RM3823 | MCR10277×Cocodrie | 53.30 | 15.00 | [ |
9 | qSB9 | RM215-RM245 | Lemont×Jasmine 85 | 5.40 | 8.55 | [ |
9 | qSB9TQ | CY-85 and Y86 | Teqing×Lemont | — | — | [ |
11 | qSB-11LE | Z22-27C-Z23-33C | Teqing×Lemont | — | — | [ |
12 | qsbr_12.1 | RM3747-RM27608 | MCR10277×Cocodrie | 49.10 | 14.00 | [ |
12 | qSBD12-2 | RM1246-D1252 | Yangdao4×Lemont | 3.74 | 11.95 | [ |
[1] | PARK D S, SAYLER R J, HONG Y G, et al. A method for inoculation and evaluation of rice sheath blight disease[J]. Plant Disease, 2008, 92(1):25-29. |
[2] | ALMASIA N I, BAZZINI A A, HOPP H E, et al. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants[J]. Molecular Plant Pathology, 2008, 9(3):329-338. |
[3] | PARMETER J R, WHITNEY H S. Taxonomy and nomenclature of the imperfect state[M]// Rhizoctonia solani, Biology and Pathology. Berkeley: University of California Press, 1970:7-19. |
[4] | KUNINAGA S, GODOY-LUTZ G, YOKOSAWA R, et al. rDNA-ITS nucleotide sequences analysis of Thanatephoruscucumeris AG-1 associated with web blight on common beans in Central America and Caribbean[J]. Annuals of the Phytopathological Society of Japan, 2002, 68(2):187. |
[5] | SNEH B, BURPEE L, OGOSHI A. Identification of Rhizoctonia species[M]. New York: APS press, 1991. |
[6] | OGOSHI A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn[J]. Annual Review of Phytopathology, 1987, 25:125-143. |
[7] | AKHTAR J, JHA V K, KUMAR A, et al. Occurrence of banded leaf and sheath blight of maize in harkhand with reference to diversity in Rhizoctonia solani[J]. Asian Journal of Agricultural Science, 2009, 1(2):32-35. |
[8] | 杨迎青, 杨媚, 兰波, 等. 水稻纹枯病菌致病机理的研究进展[J]. 中国农学通报, 2014, 30(28):245-250. |
[9] | KING B C, WAXMAN K D, NENNI N V, et al. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi[J]. Biotechnology for Biofuels, 2011, 4:4. |
[10] | 陈夕军, 徐艳, 童蕴慧, 等. 水稻纹枯病菌毒素致病机理研究[J]. 植物病理学报, 2009, 39(4):439-443. |
[11] | GHOSH S, KANWAR P, JHA G. Alterations in rice chloroplast integrity,photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani[J]. Scientific Reports, 2017, 7:41610. |
[12] | XIA Y, FEI B H, HE J Y, et al. Transcriptome analysis reveals the host selection fitness mechanisms of the Rhizoctonia solani AG1IA pathogen[J]. Scientific Reports, 2017, 7:10120. |
[13] | CHEN L, AI P, ZHANG J F, et al. RSIADB,a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA[J]. Database:the Journal of Biological Databases and Curation, 2016, 2016:baw031. |
[14] | 陈斌. 福建水稻种质资源纹枯病抗性及转基因水稻广谱抗病性的鉴定[D]. 福州: 福建农林大学, 2010. |
[15] | 彭绍裘. 水稻纹枯病及其防治[M]. 上海: 上海科学技术出版社, 1986:164. |
[16] | 左示敏, 陈天晓, 邹杰, 等. 水稻不同类群品种间的纹枯病抗性评价和抗病新种质筛选[J]. 植物病理学报, 2014, 44(6):658-670. |
[17] | ZENG Y X, SHI J S, JI Z J, et al. Genotype by environment interaction:the greatest obstacle in precise determination of rice sheath blight resistance in the field[J]. Plant Disease, 2017, 101(10):1795-1801. |
[18] | 王玲, 黄雯雯, 刘连盟, 等. 对中国南方部分籼型杂交水稻纹枯病抗性的评价[J]. 作物学报, 2011, 37(2):263-270. |
[19] | 宋成艳, 王桂玲, 孟庆忠, 等. 寒地水稻纹枯病初步研究[J]. 植物保护, 2002, 28(2):8-11. |
[20] | 陆岗, 梁耀懋, 黎坤爱, 等. 深水稻种质资源耐淹性及抗稻纹枯病特性研究[J]. 西南农业学报, 2004, 17(6):701-704. |
[21] | PRASAD B, EIZENGA G C. Rice sheath blight disease resistance identified in Oryza spp. accessions[J]. Plant Disease, 2008, 92(11):1503-1509. |
[22] | SRINIVASACHARY, WILLOCQUET L, SAVARY S. Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives[J]. Euphytica, 2011, 178(1):1-22. |
[23] | PERSAUD R, SARAVANAKUMAR D. Identification of resistant cultivars for sheath blight and use of ammi models to understand genotype and environment interactions[J]. Plant Disease, 2019, 103(9). |
[24] | LI Z K, PINSON S R M, MARCHETTI M A, et al. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani)[J]. Theoretical and Applied Genetics, 1995, 91(2):382-388. |
[25] | ZENG Y X, JI Z J, MA L Y, et al. Advances in mapping loci conferring resistance to rice sheath blight and mining rhizoctoniasolani resistant resources[J]. Rice Science, 2011, 18(1):56-66. |
[26] | FU D, CHEN L, YU G H, et al. QTL mapping of sheath blight resistance in a deep-water rice cultivar[J]. Euphytica, 2011, 180(2):209-218. |
[27] | NELSON J C, OARD J H, GROTH D, et al. Sheath-blight resistance QTLs in japonica rice germplasm[J]. Euphytica, 2012, 184(1):23-34. |
[28] | EIZENGA G C, PRASAD B, JACKSON A K, et al. Identification of rice sheath blight and blast quantitative trait loci in two different O.sativa/O.nivara advanced backcross populations[J]. Molecular Breeding, 2013, 31(4):889-907. |
[29] | LIU G, JIA Y, MCCLUNG A, et al. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease[J]. Plant Disease, 2013, 97(1):113-117. |
[30] | ZUO S M, YIN Y J, PAN C H, et al. Fine mapping of qSB-11(LE),the QTL that confers partial resistance to rice sheath blight[J]. Theoretical and Applied Genetics, 2013, 126(5):1257-1272. |
[31] | ZUO S M, ZHU Y J, YIN Y J, et al. Comparison and confirmation of quantitative trait loci conferring partial resistance to rice sheath blight on chromosome 9[J]. Plant Disease, 2014, 98(7):957-964. |
[32] | LIU Y, CHEN L, FU D, et al. Dissection of additive,epistatic effect and QTL×environment interaction of quantitative trait loci for sheath blight resistance in rice[J]. Hereditas, 2014, 151(2/3):28-37. |
[33] | YADAV S, ANURADHA G, KUMAR R R, et al. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.)[J]. Springer Plus, 2015, 4:175. |
[34] | WEN Z H, ZENG Y X, JI Z J, et al. Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice[J]. Genetics and Molecular Research, 2015, 14(1):1636-1649. |
[35] | GOAD D M, JIA Y L, GIBBONS A, et al. Identification of novel QTL conferring sheath blight resistance in two weedy rice mapping populations[J]. Rice (New York,NY), 2020, 13(1):21. |
[36] | JIA L M, YAN W G, ZHU C S, et al. Allelic analysis of sheath blight resistance with association mapping in rice[J]. PLoS One, 2012, 7(3):e32703. |
[37] | 孙晓棠, 卢冬冬, 欧阳林娟, 等. 水稻纹枯病抗性关联分析及抗性等位变异发掘[J]. 作物学报, 2014, 40(5):779-787. |
[38] | LAVALE S A, PRASHANTHI S K, FATHY K. Mapping association of molecular markers and sheath blight (Rhizoctonia solani) disease resistance and identification of novel resistance sources and loci in rice[J]. Euphytica, 2018, 214(4):1-11. |
[39] | CHEN Z X, FENG Z M, KANG H X, et al. Identification of new resistance loci against sheath blight disease in rice through genome-wide association study[J]. Rice Science, 2019, 26(1):21-31. |
[40] | WANG A J, SHU X Y, JING X, et al. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study[J]. Plant Biotechnology Journal, 2021, 19(8):1553-1566. |
[41] | LIN W, ANURATHA C S, DATTA K, et al. Genetic engineering of rice for resistance to sheath blight[J]. Bio/Technology, 1995, 13(7):686-691. |
[42] | BAISAKH N, DATTA K, OLIVA N, et al. Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance[J]. Plant Biotechnology, 2001, 18(2):101-108. |
[43] | DATTA K, TU J M, OLIVA N, et al. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars[J]. Plant Science, 2001, 160(3):405-414. |
[44] | CHEZEM W R, MEMON A, LI F S, et al. SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis[J]. The Plant Cell, 2017, 29(8):1907-1926. |
[45] | LI N, LIN B, WANG H, et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize[J]. Nature Genetics, 2019, 51(10):1540-1548. |
[46] | 陈夕军, 张红, 徐敬友, 等. 水稻纹枯病菌胞壁降解酶的产生及致病作用[J]. 江苏农业学报, 2006, 22(1):24-28. |
[47] | WANG R, LU L X, PAN X B, et al. Functional analysis of OsPGIP1 in rice sheath blight resistance[J]. Plant Molecular Biology, 2015, 87(1/2):181-191. |
[48] | CHEN X J, CHEN Y, ZHANG L N, et al. Overexpression of OsPGIP1 enhances rice resistance to sheath blight[J]. Plant Disease, 2016, 100(2):388-395. |
[49] | CHEN X J, CHEN Y W, ZHANG L N, et al. Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice[J]. Rice (New York,NY), 2019, 12(1):56. |
[50] | GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease[J]. Molecular Plant Pathology, 2018, 19(9):2149-2161. |
[51] | XUE X, CAO Z X, ZHANG X T, et al. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Disease, 2016, 100(8):1634-1642. |
[52] | MOLLA K A, KARMAKAR S, MOLLA J, et al. Understanding sheath blight resistance in rice:the road behind and the road ahead[J]. Plant Biotechnology Journal, 2020, 18(4):895-915. |
[53] | KARMAKAR S, MOLLA K A, CHANDA P K, et al. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight[J]. Planta, 2016, 243(1):115-130. |
[54] | CAO W L, ZHANG H M, ZHOU Y, et al. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani,the causal agent of sheath blight[J]. Plant Biotechnology Journal, 2022, 20(2):335-349. |
[55] | TSUDA K, SATO M, STODDARD T, et al. Network properties of robust immunity in plants[J]. PLoS Genetics, 2009, 5(12):e1000772. |
[56] | PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4):1648-1655. |
[57] | WANG H H, MENG J, PENG X X, et al. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani,the causing agent of rice sheath blight[J]. Plant Molecular Biology, 2015, 89(1/2):157-171. |
[58] | PENG X X, HU Y J, TANG X K, et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation,PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5):1485-1498. |
[59] | PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice (New York,NY), 2016, 9(1):63. |
[60] | JOHN LILLY J, SUBRAMANIAN B. Gene network mediated by WRKY 13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.)[J]. Plant Science, 2019, 280:269-282. |
[61] | HELLIWELL E E, WANG Q, YANG Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaportheoryzae and Rhizoctoniasolani[J]. Plant Biotechnology Journal, 2013, 11(1):33-42. |
[62] | LI N, KONG L G, ZHOU W H, et al. Overexpression of Os2H16 enhances resistance to phytopathogens and tolerance to drought stress in rice[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2013, 115(3):429-441. |
[63] | LI N, WEI S T, CHEN J, et al. OsASR2 regulates the expression of a defence-related gene,Os2H16,by targeting the GT-1 Cis-element[J]. Plant Biotechnology Journal, 2018, 16(3):771-783. |
[64] | ZHU Q L, ZENG D C, YU S Z, et al. From golden rice to aSTARice:bioengineering astaxanthin biosynthesis in rice endosperm[J]. Molecular Plant, 2018, 11(12):1440-1448. |
[65] | LIU X X, LIU H L, ZHANG Y Y, et al. Fine-tuning flowering time via genome editing of upstream open reading frames of heading date 2 in rice[J]. Rice (New York,NY), 2021, 14(1):59. |
[66] | SINGH P, MAZUMDAR P, HARIKRISHNA J A, et al. Sheath blight of rice:a review and identification of priorities for future research[J]. Planta, 2019, 250(5):1387-1407. |
[1] | 余波, 杨军, 胡庆峰, 林添资, 景德道, 钱华飞, 李闯, 曾生元, 孙立亭, 杜灿灿, 龚红兵. 同熟期粳稻品种混栽对产量性状的影响[J]. 浙江农业科学, 2022, 63(9): 1936-1939. |
[2] | 黄仨仨, 金明焕, 刘禹恒, 李飞飞, 吕尊富. 基于便携式作物生长监测仪的水稻生长指标光谱监测研究[J]. 浙江农业科学, 2022, 63(9): 1952-1958. |
[3] | 衣政伟, 侯凡, 胡中泽, 唐昌华. 2020年长江中下游中籼迟熟水稻区域试验[J]. 浙江农业科学, 2022, 63(9): 1959-1963. |
[4] | 陈钰佩, 陆若辉, 朱伟锋, 孔海民. 长期施用不同比例有机肥对水稻产量及土壤养分的影响[J]. 浙江农业科学, 2022, 63(9): 1964-1967. |
[5] | 董斯琳, 姚桐桐, 谢琳淼, 孙广玉, 敖红. 哈茨木霉对镉胁迫下草地早熟禾的促生和增抗效应及其生理机制[J]. 浙江农业科学, 2022, 63(9): 2046-2053. |
[6] | 李诚, 王少希, 陈益华, 李洁, 杨正武, 范冬林. 水稻病虫害绿色综合防控技术集成[J]. 浙江农业科学, 2022, 63(9): 2073-2075. |
[7] | 余山红, 谢关林, 严成其. 水稻根围白叶枯病与细菌性条斑病生防细菌的筛选与鉴定[J]. 浙江农业科学, 2022, 63(9): 2086-2089. |
[8] | 王会来, 陈丽芬, 李赛慧, 吴东涛, 褚军杰, 马进川, 邹平. 镉轻度污染农田的水稻品种筛选[J]. 浙江农业科学, 2022, 63(8): 1657-1660. |
[9] | 闫川, 詹艳, 蒋根水, 洪晓富, 李新敏, 纪昊, 宋佳谕, 陈宇眺. 杂交中粳水稻浙杭优820的选育与应用[J]. 浙江农业科学, 2022, 63(7): 1397-1399. |
[10] | 张祺, 孙万春, 俞巧钢, 周家昊, 林辉, 周建利, 马军伟. 长期施用有机肥对稻田土壤理化性状的影响[J]. 浙江农业科学, 2022, 63(7): 1441-1444. |
[11] | 邵文奇, 纪力, 孙春梅, 钟平, 庄春, 陈川. 不同拌种处理对机插水稻秧苗素质的影响[J]. 浙江农业科学, 2022, 63(7): 1445-1448. |
[12] | 刘小琴. 4种不同类型叶面阻控剂对水稻镉吸收和积累的影响[J]. 浙江农业科学, 2022, 63(7): 1456-1459. |
[13] | 朱芸, 傅庆林, 郭彬, 林义成, 刘琛. 腐殖酸和脱硫石膏对滨海盐土及水稻产量的影响[J]. 浙江农业科学, 2022, 63(6): 1139-1143. |
[14] | 郑铭洁, 刘琛, 朱铭, 傅庆林, 郭彬, 裘高扬, 李华, 林义成. 浙江省高产稻田的土壤肥力特征研究[J]. 浙江农业科学, 2022, 63(6): 1147-1149. |
[15] | 童文彬, 江建锋, 杨海峻, 陈喜靖, 林义成, 刘琛, 张露华, 方俊, 郭彬. 南方典型酸化土壤改良与水稻安全种植同步应用技术[J]. 浙江农业科学, 2022, 63(6): 1154-1156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||