浙江农业科学 ›› 2023, Vol. 64 ›› Issue (12): 3012-3019.DOI: 10.16178/j.issn.0528-9017.20221171
王从1,2,3(), 孙会峰1,2,3, 张继宁1,2,3, 张鲜鲜1,2,3, 周胜1,2,3,*(
)
收稿日期:
2022-11-17
出版日期:
2023-12-11
发布日期:
2023-12-14
通讯作者:
周胜(1971—),男,安徽黄山人,研究员,博士,主要从事低碳与循环农业研究,E-mail:zhous@263.net。
作者简介:
王从(1990—),男,江苏连云港人,助理研究员,博士,主要从事农田土壤碳氮循环和低碳农业技术研究,E-mail: wangcong@saas.sh.cn。
基金资助:
Received:
2022-11-17
Online:
2023-12-11
Published:
2023-12-14
摘要:
近年来,农田土壤固碳技术逐渐成为农业低碳领域的研究热点,作为受人类活动影响最深刻的陆地生态系统,农田土壤碳库的积累与释放易受各类耕作和农艺措施的影响,从而改变土壤碳库平衡。覆盖作物(cover crop)作为基于自然的解决方案(nature-based solution,NbS)之一,其在农田土壤固碳中的应用开始受到人们的关注。国内外在覆盖作物减少农田土壤侵蚀、提升耕地质量以及增加土壤碳汇方面已进行了大量研究,但覆盖作物的固碳机制研究仍处在起步阶段。本文综述了国内外覆盖作物在农田土壤固碳研究的进展,针对覆盖作物在实现农田土壤固碳的途径及其影响因素进行了总结与梳理,并对未来我国覆盖作物固碳研究进行了展望。
中图分类号:
王从, 孙会峰, 张继宁, 张鲜鲜, 周胜. 覆盖作物土壤固碳效应和影响因素研究进展[J]. 浙江农业科学, 2023, 64(12): 3012-3019.
[1] | FAO. Food and Agriculture Organization, 2017. Global Soil Organic Carbon Map[R/OL]. (2019-06-01) [2023-08-12]. https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/7730e747-eb73-49c9-bfe6-84ebae718743. |
[2] | FAO. Learning tool on Nationally Appropriate Mitigation Actions (NAMAs) in the agriculture, forestry and other land use (AFOLU) sector[R]. Rome, 2015. |
[3] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. |
[4] | LEFEVRE C, REKIK F, ALCANTARA V, et al. Soil organic carbon: The hidden potential[R]. Food and Agriculture Organization of the United Nations, Rome, Italy, 2017. |
[5] | CAI Z C, YAN X Y. Understanding greenhouse gas emissions from croplands in China[M]. ACS Symposium Series. Washington, DC: American Chemical Society, 2011: 91-120. |
[6] | 赵永存, 徐胜祥, 王美艳, 等. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 2018, 33(2): 191-197. |
[7] | SUN W, HUANG Y, ZHANG W, et al. Carbon sequestration and its potential in agricultural soils of China[J]. Global Biogeochemical Cycles, 2010, 24(3): 1302-1307. |
[8] | 美国可持续农业研究与教育计划. 覆盖作物高效管理[M]. 3版. 北京: 电子工业出版社, 2016. |
[9] | HUGHES H D, HENSON E R. Crop production-principles and practices[M]. New York: Macmillan Co, 1957. |
[10] | LANGDALE G W, BLEVINS R L, KARLEN D, et al. Cover crop effects on soil erosion by wind and water[M]∥HARGROVE W L. Cover crops for clean water, SWCS, Ankeny, 1991. |
[11] | RAM D N, VITTUM M T, ZWERMAN P J. An evaluation of certain winter cover crops for the control of splash erosion[J]. Agronomy Journal, 1960, 52(8): 479-482. |
[12] | ZHU J C, GANTZER C J, ANDERSON S H, et al. Runoff, soil, and dissolved nutrient losses from no-till soybean with winter cover crops[J]. Soil Science Society of America Journal, 1989, 53(4): 1210-1214. |
[13] | MAES J, JACOBS S. Nature-based solutions for Europe's sustainable development[J]. Conservation Letters, 2017, 10:121-124. |
[14] | FISHER M J, RAO I M, AYARZA M A, et al. Carbon storage by introduced deep-rooted grasses in the South American savannas[J]. Nature, 1994, 371(6494): 236-238. |
[15] | MOUKANNI N, BREWER K, GAUDIN A C M, et al. Optimizing carbon sequestration through cover cropping in Mediterranean agroecosystems: synthesis of mechanisms and implications for management[J]. Frontiers in Agronomy, 2022, 4: 844166. |
[16] | BLANCO-CANQUI H, HOLMAN J D, SCHLEGEL A J, et al. Replacing fallow with cover crops in a semiarid soil: effects on soil properties[J]. Soil Science Society of America Journal, 2013, 77(3): 1026-1034. |
[17] | BLANCO-CANQUI H, SHAVER T, LINDQUIST J, et al. Cover crops and ecosystem services: insights from studies in temperate soils[J]. Agronomy Journal, 2015, 107(6): 2449-2474. |
[18] | GREGORY P J, ATWELL B J. The fate of carbon in pulse-labelled crops of barley and wheat[J]. Plant and Soil, 1991, 136(2): 205-213. |
[19] | SCHMITT A, PAUSCH J, KUZYAKOV Y. C and N allocation in soil under ryegrass and alfalfa estimated by 13C and 15N labelling[J]. Plant and Soil, 2013, 368(1/2): 581-590. |
[20] | 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838. |
[21] | HU S, GRUNWALD N, VAN BRUGGEN A, et al. Short-term effects of cover crop incorporation on soil carbon pools and nitrogen availability[J]. Soil Science Society of America Journal, 1997, 61(3): 901-911. |
[22] | HAN X, XU C, DUNGAIT J, et al. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis[J]. Biogeosciences, 2018, 15(7): 1933-1946. |
[23] | HUANG Y, REN W, GROVE J, et al. Assessing synergistic effects of no-tillage and cover crops on soil carbon dynamics in a long-term maize cropping system under climate change[J]. Agricultural and Forest Meteorology, 2020, 291: 108090. |
[24] | LEOMO S, ALAM S, AFRIANTO E, et al. Cover crop residue effects on soil and corn performance in ex-nickel mining soils[J]. Pakistan Journal of Biological Sciences, 2021, 24(8): 888-894. |
[25] | ABDALLA M, HASTINGS A, CHENG K, et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity[J]. Global Change Biology, 2019, 25(8): 2530-2543. |
[26] | KEENE C L, CURRAN W S, WALLACE J M, et al. Cover crop termination timing is critical in organic rotational no-till systems[J]. Agronomy Journal, 2017, 109(1): 272-282. |
[27] | HAYDEN Z D, NGOUAJIO M, BRAINARD D C. Planting date and staggered seeding of rye-vetch mixtures: biomass, nitrogen, and legume winter survival[J]. Agronomy Journal, 2015, 107(1): 33-40. |
[28] | 魏静, 郭树芳, 翟丽梅, 等. 覆盖作物翻压对华北平原春玉米产量和土壤养分的影响[J]. 中国土壤与肥料, 2020(1): 172-178. |
[29] | CHAHAL I, VYN R J, MAYERS D, et al. Cumulative impact of cover crops on soil carbon sequestration and profitability in a temperate humid climate[J]. Scientific Reports, 2020, 10(1): 13381. |
[30] | ODLAND T E, KNOBLAUCH H C. The value of cover crops in continuous corn Culture[J]. Agronomy Journal, 1938, 30(1): 22-29. |
[31] | BELFRY K D, VAN EERD L L. Establishment and impact of cover crops intersown into corn[J]. Crop Science, 2016, 56(3): 1245-1256. |
[32] | JINGER D, KAKADE V. Land degradation and its management through soil and water conservation measures on arable[J]. Kerala Karshakan, 2019, 7(5): 12-20. |
[33] | 肖胜生, 方少文, 杨洁, 等. 水土流失区植被恢复过程中土壤碳汇的形成机理[J]. 中国水土保持, 2011(12): 25-28. |
[34] | AI M, SUN Y Y, YAN B, et al. A summary of the impact of land degradation on soil carbon sequestration[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394: 052028. |
[35] | ALLISON F E. Soil organic matter and its role in crop production[M]. Elsevier Science Publication, 1973. |
[36] | BEALE O W, NUTT G, PEELE T. The effects of mulch tillage on runoff, erosion, soil properties, and crop yields[J]. Soil Science Society of America Journal, 1955, 19(2): 244-247. |
[37] | SHELTON C H, BRADLEY J F. Controlling erosion and sustaining production with no-till systems[J]. Tennessee Farm and Home Science, 1987, (winter):18-23. |
[38] | MUTCHLER C K, MCDOWELL L L. Soil loss from cotton with winter cover crop[J]. Transactions of the ASAE, 1990, 33(2): 432-436. |
[39] | SALTER R M, GREEN T C. Factors affecting the accumulation and loss of nitrogen and organic carbon in cropped Soils[J]. Agronomy Journal, 1933, 25(9): 622-630. |
[40] | BARTHÈS B, ROOSE E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. CATENA, 2002, 47(2): 133-149. |
[41] | CATES A M, RUARK M D, HEDTCKE J L, et al. Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter[J]. Soil and Tillage Research, 2016, 155: 371-380. |
[42] | ZHANG D B, YAO Z Y, CHEN J, et al. Improving soil aggregation, aggregate-associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China[J]. European Journal of Soil Science, 2019: 12843. |
[43] | BRUCE R R, LANGDALE G W, WEST L T. Modification of soil characteristics of degraded soil surfaces by biomass input and tillage affecting soil water regime[J]. Soil Science, 1990, 6: 17-21. |
[44] | STEGARESCU G, REINTAM E, TÕNUTARE T. Cover crop residues effect on soil structural stability and phosphatase activity[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2021, 71(9): 992-1005. |
[45] | 王敬宽, 高枫舒, 张楷悦, 等. 禾本科绿肥还田对盐碱地棉田土壤碳氮及微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2023, 31(3): 396-404. |
[46] | 郑佳舜, 胡钧铭, 韦翔华, 等. 绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响[J]. 中国生态农业学报(中英文), 2021, 29(4): 691-703. |
[47] | 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902-910. |
[48] | BUYER J S, TEASDALE J R, ROBERTS D P, et al. Factors affecting soil microbial community structure in tomato cropping systems[J]. Soil Biology and Biochemistry, 2010, 42(5): 831-841. |
[49] | 任慧, 丁磊, 赵财. 不同冬季覆盖作物轮作对农田土壤碳氮影响[J]. 中国农学通报, 2021, 37(35): 57-64. |
[50] | RYGIEWICZ P, ANDERSEN C. Mycorrhizae alter quality and quantity of carbon allocated below ground[J]. Nature, 1994, 369(6475): 58-60. |
[51] | GRIMOLDI A, KAVANOVÁ M, LATTANZI F A, et al. Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: quantification by 13CO2/12CO2 steady-state labelling and gas exchange[J]. New Phytologist, 2006, 172(3): 544-553. |
[52] | SNELLGROVE R C, SPLITTSTOESSER W E, STRIBLEY D P, et al. The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas[J]. New Phytologist, 1982, 92(1): 75-87. |
[53] | LEYVAL C, BERTHELIN J. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi[J]. Biology and Fertility of Soils, 1993, 15(4): 259-267. |
[54] | KABIR Z, KOIDE R T. Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA[J]. Plant and Soil, 2002, 238(2): 205-215. |
[55] | 陈春梅, 谢祖彬, 朱建国. 土壤有机碳激发效应研究进展[J]. 土壤, 2006, 38(4): 359-365. |
[56] | LÖHNIS F. Nitrogen availability of green manures[J]. Soil Science, 1926, 22(4): 253-290. |
[57] | BINGEMAN C W, VARNER J E, MARTIN W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal, 1953, 17(1): 34-38. |
[58] | BROADBENT F E, NORMAN A G. Some factors affecting the availability of the organic nitrogen in soil-a preliminary report[J]. Soil Science Society of America Journal, 1947, 11(C): 264-267. |
[59] | DE DEYN G B, CORNELISSEN J H C, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 2008, 11(5): 516-531. |
[60] | CANTAREL A A M, POMMIER T, DESCLOS-THEVENIAU M, et al. Using plant traits to explain plant-microbe relationships involved in nitrogen acquisition[J]. Ecology, 2015, 96(3): 788-799. |
[61] | GUYONNET J P, GUILLEMET M, DUBOST A, et al. Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation[J]. Frontiers in Plant Science, 2018, 9: 1662. |
[62] | 唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465-473. |
[63] | 张经廷, 张丽华, 吕丽华, 等. 还田作物秸秆腐解及其养分释放特征概述[J]. 核农学报, 2018, 32(11): 2274-2280. |
[64] | HERBERT S J, LIU G H. Cover crop biomass accumulation and nitrogen release[R]. Agronomy Research Report Umass Extension. USDA, 1997: 13-16. |
[65] | PEREIRA N S, SOARES I, DE MIRANDA F R. Decomposition and nutrient release of leguminous green manure species in the Jaguaribe-Apodi region, Ceará, Brazil[J]. Ciência Rural, 2016, 46(6): 970-975. |
[66] | ZHANG Z L, KAYE J P, BRADLEY B A, et al. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions[J]. Global Change Biology, 2022, 28(19): 5831-5848. |
[67] | 朱亚琼, 简大为, 郑伟, 等. 不同种植模式下豆科绿肥对土壤改良效果的影响[J]. 草业科学, 2020, 37(5): 889-900. |
[68] | FAÉ G S, SULC R M, BARKER D J, et al. Integrating winter annual forages into a no-till corn silage system[J]. Agronomy Journal, 2009, 101(5): 1286-1296. |
[69] | STAVI I, LAL R, JONES S, et al. Implications of cover crops for soil quality and geodiversity in a humid-temperate region in the Midwestern usa[J]. Land Degradation & Development, 2012, 23(4): 322-330. |
[70] | FORNARA D A, TILMAN D. Plant functional composition influences rates of soil carbon and nitrogen accumulation[J]. Journal of Ecology, 2008, 96(2): 314-322. |
[71] | CONG W F, VAN RUIJVEN J, MOMMER L, et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes[J]. Journal of Ecology, 2014, 102(5): 1163-1170. |
[72] | 陈学文, 张晓平, 梁爱珍, 等. 耕作方式对黑土硬度和容重的影响[J]. 应用生态学报, 2012, 23(2): 439-444. |
[73] | 王芸, 韩宾, 史忠强, 等. 保护性耕作对土壤微生物特性及酶活性的影响[J]. 水土保持学报, 2006, 20(4): 120-122, 142. |
[74] | 吕瑞珍, 熊瑛, 李友军, 等. 保护性耕作对农田土壤碳库特性的影响[J]. 水土保持学报, 2014, 28(4): 206-209, 217. |
[75] | CHEN G H, WEIL R R. Penetration of cover crop roots through compacted soils[J]. Plant and Soil, 2010, 331(1/2): 31-43. |
[76] | FRANZLUEBBERS A J. Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States[J]. Soil Science Society of America Journal, 2010, 74(2): 347-357. |
[77] | BAI X, HUANG Y, REN W, et al. Responses of soil carbon sequestration to climate-smart agriculture practices: a meta-analysis[J]. Global Change Biology, 2019, 25(8): 2591-2606. |
[78] | OLSON K, EBELHAR S A, LANG J M. Long-term effects of cover crops on crop yields, soil organic carbon stocks and sequestration[J]. Open Journal of Soil Science, 2014, 4(8): 284-292. |
[79] | 冯秋苹, 刘玉涛, 郭勇智, 等. 不同秸秆还田方式对土壤团聚体稳定性及有机碳含量的影响[J]. 吉林农业大学学报, 2023, 45(5): 564-571. |
[80] | 李忠义, 唐红琴, 蒙炎成, 等. 不同还田方式下拉巴豆秸秆腐解及养分释放特征[J]. 中国土壤与肥料, 2017(2): 130-135. |
[81] | 李忠义, 韦彩会, 何铁光, 等. 不同还田方式下2种夏季绿肥的腐解特性[J]. 西南农业学报, 2020, 33(7): 1554-1560. |
[82] | HASSINK J, WHITMORE A P. A model of the physical protection of organic matter in soils[J]. Soil Science Society of America Journal, 1997, 61(1): 131-139. |
[83] | 张学良, 张宇亭, 刘瑞, 等. 绿肥不同还田方式对土壤温室气体排放的影响[J]. 草业学报, 2021, 30(5): 25-33. |
[84] | 张涛, 何燕. 绿肥还田对贵州黄壤玉米产量及温室气体排放的影响[J]. 江苏农业科学, 2022, 50(9): 70-76. |
[1] | 尤滨乾, 贾伟忠, 葛佳颖, 林蔚红, 杨丽, 阮赞誉, 沈秋兰, 居梦婷, 程勤海. 海宁市农田退水“零直排”治理现状、问题与对策建议[J]. 浙江农业科学, 2023, 64(9): 2301-2304. |
[2] | 邹丽娜, 柳婷婷, 李文略, 骆霞虹, 朱关林, 安霞. 麻地膜覆盖对番茄根际土壤微生物群落结构的影响[J]. 浙江农业科学, 2023, 64(2): 371-378. |
[3] | 乔宇颖, 李娜, 奚辉, 胡振华, 干莹莹, 陈喜靖, 喻曼. 基于熵权法的餐厨垃圾沼液农田利用综合评价[J]. 浙江农业科学, 2023, 64(12): 2990-2993. |
[4] | 周健驹, 金晖, 丁少华, 李子川, 柴彦君. 绍兴市猪粪沼液成分特征及其在农田的安全利用分析[J]. 浙江农业科学, 2022, 63(9): 2138-2143. |
[5] | 赵怡阳, 陶祥运, 张易旻, 王燕, 蒋位青. 酸模对Cd、Cu、Pb复合污染农田的修复潜力[J]. 浙江农业科学, 2022, 63(8): 1878-1882. |
[6] | 赵怡阳, 陶祥运, 张易旻, 王燕. 农田重金属污染土壤的植物修复工程研究[J]. 浙江农业科学, 2022, 63(2): 391-395. |
[7] | 郑铭洁, 张爽, 章明奎. 浙江省地质高背景农田的分布与重金属污染特点[J]. 浙江农业科学, 2022, 63(1): 166-169. |
[8] | 宁银中. 基于Meta分析的农田土壤Pb、Zn污染现状[J]. 浙江农业科学, 2022, 63(1): 179-185. |
[9] | 章秀梅, 谢炜, 钟林炳, 杨文叶, 倪兆华, 章明奎. 治理技术组合应用对提高镉污染农田水稻安全生产的潜力分析[J]. 浙江农业科学, 2021, 62(3): 513-515. |
[10] | 李飞. 诸暨市农田生态沟渠系统建设路径分析[J]. 浙江农业科学, 2021, 62(12): 2530-2531. |
[11] | 彭柳林, 余永琦, 余艳锋, 付江凡, 王长松. 江西省高标准农田建设现状、问题与对策研究[J]. 浙江农业科学, 2020, 61(9): 1908-1914. |
[12] | 邵建均, 吕旭东, 王永尚, 鲁长根. 浙江省农田氮磷生态拦截沟渠系统建设实例与分析建议[J]. 浙江农业科学, 2020, 61(9): 1915-1917. |
[13] | 施文全, 顾金峰, 马国胜. 江苏省基于可持续发展理念高标准基本农田生态评价体系的构建及对粮食安全的影响[J]. 浙江农业科学, 2020, 61(9): 1918-1921. |
[14] | 陈丽芬, 王会来, 钟杨波, 李赛慧. 丽水市莲都区碧湖镇农田氮磷生态拦截沟渠的建设应用现状与思考[J]. 浙江农业科学, 2020, 61(6): 1265-1268. |
[15] | 赵丽芳, 黄鹏武, 宗玉统, 卢升高. 适于镉铜复合污染农田安全利用的油菜品种筛选[J]. 浙江农业科学, 2019, 60(9): 1614-1616. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||