浙江农业科学 ›› 2018, Vol. 59 ›› Issue (12): 2161-2166.DOI: 10.16178/j.issn.0528-9017.20181201
徐刚1,2,叶恭银1*
收稿日期:
2018-09-30
出版日期:
2018-12-11
通讯作者:
叶恭银(1966—),男,浙江建德人,教授,研究方向为昆虫生理生化与分子生物学及害虫生物防治,E?mail: chu@zju.edu.cn。
作者简介:
徐刚(1988—),男,湖北应城人,博士,研究方向为昆虫生理生化与分子生物学,E?mail: xugang@yzu.edu.cn。
基金资助:
Received:
2018-09-30
Online:
2018-12-11
摘要: 简要介绍近年来二化螟生理生化与分子生物学领域的研究进展,综述二化螟基因组及功能基因、抗药性、对Bt抗性的分子机制、神经受体、嗅觉相关基因、miRNA、热休克蛋白,以及被寄生蜂调控等相关研究,旨在为二化螟的绿色防控提供理论参考。
中图分类号:
徐刚,叶恭银. 二化螟生理生化与分子生物学研究进展[J]. 浙江农业科学, 2018, 59(12): 2161-2166.
[1] 李秀花, 姚洪渭, 叶恭银. 二化螟盘绒茧蜂寄生对寄主二化螟幼虫免疫反应的影响[J]. 植物保护学报, 2011, 38(4):313⁃319.
[2] YAO R, ZHAO D D, ZHANG S, et al. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides[J]. Pest Management Science, 2017, 73(6): 1169⁃1178.
[3] DONG X T, LIAO H, ZHU G H, et al. CRISPR/Cas9‐mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis[J]. Insect Science, 2017: doi:10.1111/1744⁃7917.12544.
[4] YIN C, LIU Y, LIU J, et al. ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis[J]. Database, 2014(15): 92⁃108.
[5] 侯丽, 詹帅, 周欣,等. 中国昆虫基因组学的研究进展[J]. 应用昆虫学报, 2017, 54(5):693⁃704.
[6] MA W, ZHANG Z, PENG C, et al. Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker)[J]. PloS One, 2012, 7(5): e38151.
[7] WU S F, SUN F D, QI Y X, et al. Parasitization by Cotesia chilonis influences gene expression in fatbody and hemocytes of Chilo suppressalis[J]. PLoS One, 2013, 8(9): e74309.
[8] CAO D P, LIU Y, WEI J J, et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis[J]. International Journal of Biological Sciences, 2014, 10(8): 846⁃860.
[9] XU G, WU S F, WU Y S, et al. De novo assembly and characterization of central nervous system transcriptome reveals neurotransmitter signaling systems in the rice striped stem borer, Chilo suppressalis[J]. BMC Genomics, 2015, 16(1): 525.
[10] XIA Y H, ZHANG Y N, HOU X Q, et al. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor⁃pheromone glands of Chilo suppressalis[J]. Scientific Reports, 2015, 5: 7888.
[11] LU Y H, ZHAO Y Y, LU H, et al. Midgut transcriptional variation of Chilo suppressalis larvae induced by feeding on the dead⁃end trap plant, Vetiveria zizanioides [J]. Frontiers in Physiology, 2018, 9: 1067.
[12] GE Z Y, WAN P J, HAN Z J. Cloning and characterization of trypsin⁃and chymotrypsin⁃like genes in the striped rice stem borer, Chilo suppressalis [J]. Genome, 2012, 55(4): 281⁃288.
[13] GE Z Y, WAN P J, CHENG X F, et al. Cloning and characterization of serpin⁃like genes from the striped rice stem borer, Chilo suppressalis [J]. Genome, 2013, 56(6): 359⁃366.
[14] GE Z Y, WAN P J, LI G Q, et al. Characterization of cysteine protease⁃like genes in the striped rice stem borer, Chilo suppressalis [J]. Genome, 2014, 57(2): 79⁃88.
[15] WANG B J, SHAHZAD M F, ZHANG Z, et al. Genome⁃wide analysis reveals the expansion of cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis [J]. Biochemical and Biophysical Research Communications, 2014, 443(2): 756⁃760.
[16] SU C C, TU G M, HUANG S J, et al. Genome⁃wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis[J]. Insect Molecular Biology, 2016, 25(4): 401⁃412.
[17] ZHAO X X, SITU G M, HE K, et al. Function analysis of eight chitinase genes in rice stem borer and their potential application in pest control[J]. Insect Molecular Biology, 2018: doi: 10.1111/imb.12525.
[18] GAO C F, YAO R, ZHANG Z Z, et al. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2013, 106(5): 2190⁃2194.
[19] SU J Y, ZHANG Z Z, WU M, et al. Geographic susceptibility of Chilo suppressalis Walker (Lepidoptera: Crambidae), to chlorantraniliprole in China [J]. Pest Management Science, 2014, 70(6): 989⁃995.
[20] WU M, ZHANG S, YAO R, et al. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China[J]. Journal of Economic Entomology, 2014, 107(3): 1250⁃1255.
[21] 赵丹丹, 周丽琪, 张帅, 等. 二化螟对双酰胺类杀虫剂的抗药性监测和交互抗性研究 [J]. 中国水稻科学, 2017, 31(3): 307⁃314.
[22] LIU Y L, SHAHZAD M F, ZHANG L, et al. Amplifying long transcripts of ryanodine receptors of five agricultural pests by transcriptome analysis and gap filling [J]. Genome, 2013, 56(11): 651⁃658.
[23] PENG Y C, SHENG C W, CASIDA J E, et al. Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: molecular cloning, alternative splicing and expression profiling [J]. Pesticide Biochemistry and Physiology, 2017, 135: 69⁃77.
[24] GUO L, WANG Y, ZHOU X G, et al. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole[J]. Pest Management Science, 2014, 70(7): 1083⁃1089.
[25] LU Y H, WANG G R, ZHONG L Q, et al. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China[J]. Crop Protection, 2017, 100: 196⁃202.
[26] SUN Y, XU L, CHEN Q, et al. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker)[J]. Pest Management Science, 2018, 74(6): 1416⁃1423.
[27] XU L, ZHAO J, SUN Y, et al. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker)[J]. Pest Management Science, 2018: doi: 10.1002/ps.5171.
[28] HUANG L, LU M X, HAN G J, et al. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (CsVg) expression in the rice stem borer, Chilo suppressalis[J]. Pest Management Science, 2016, 72(12): 2280⁃2286.
[29] XU B B, QIAN K, ZHANG N, et al. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis[J]. Pest Management Science, 2017, 73(10): 2111⁃2117.
[30] WANG X Y, DU L X, LIU C X, et al. RNAi in the striped stem borer, Chilo suppressalis, establishes a functional role for aminopeptidase N in Cry1Ab intoxication[J]. Journal of Invertebrate Pathology, 2017, 143: 1⁃10.
[31] QIU L, FAN J X, ZHANG B Y, et al. RNA interference knockdown of aminopeptidase N genes decrease the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca⁃expressing transgenic rice[J]. Journal of Invertebrate Pathology, 2017, 145: 9⁃12.
[32] ZHANG H, DU B, YANG Y, et al. Cadherin mutation linked to resistance to Cry1Ac affects male paternity and sperm competition in Helicoverpa armigera [J]. Journal of Insect Physiology, 2014, 70: 67⁃72.
[33] ZHANG Z, TENG X L, MA W H, et al. Knockdown of two Cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis [J]. Scientific Reports, 2017, 7(1): 5992.
[34] NING C M, WU K M, LIU C X, et al. Characterization of a Cry1Ac toxin⁃binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hubner) larvae[J]. Journal of Insect Physiology, 2010, 56(6): 666⁃672.
[35] QIU L, WANG P, WU T, et al. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines[J]. Insect Molecular Biology, 2018, 27(1): 83⁃89.
[36] CANCINO⁃RODEZNO A, ALEXANDER C, VILLASENOR R, et al. The mitogen⁃activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology, 2010, 40(1): 58⁃63.
[37] QIU L, FAN J X, LIU L, et al. Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin[J]. Scientific Reports, 2017, 7: 43964.
[38] HUANG J, WU SF, LI X H, et al. The characterization of a concentration⁃sensitive α⁃adrenergic⁃like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function[J]. Brain, Behavior and Immunity, 2012, 26(6): 942⁃950.
[39] WU S F, YAO Y, HUANG J, et al. Characterization of a β⁃adrenergic⁃like octopamine receptor from the rice stem borer (Chilo suppressalis)[J]. Journal of Experimental Biology, 2012, 215(15): 2646⁃2652.
[40] WU S F, XU G, QI Y X, et al. Two splicing variants of a novel family of octopamine receptors with different signaling properties[J]. Journal of Neurochemistry, 2014, 129(1): 37⁃47.
[41] WU S F, HUANG J, YE G Y. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker)[J]. Pest Management Science, 2013, 69(1): 126⁃134.
[42] WU S F, XU G, YE G Y. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis[J]. Journal of Insect Physiology, 2015, 75: 39⁃46.
[43] XU G, WU S F, GU G X, et al. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis[J]. Insect Biochemistry and Molecular Biology, 2017, 83: 80⁃93.
[44] AHERN G P. 5⁃HT and the immune system[J]. Current Opinion in Pharmacology, 2011, 11(1): 29⁃33.
[45] SARKAR C, BASU B, CHAKROBORTY D, et al. The immunoregulatory role of dopamine: an update[J]. Brain, Behavior and Immunity, 2010, 24(4): 525⁃528.
[46] WU S F, XU G, STANLEY D, et al. Dopamine modulates hemocyte phagocytosis via a D1⁃like receptor in the rice stem borer, Chilo suppressalis[J]. Scientific Reports, 2015, 5: 12247.
[47] XU G, WU S F, TENG Z W, et al. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae)[J]. Insect Science, 2017, 24(3): 371⁃384.
[48] SHENG C W, JIA Z Q, OZOE Y, et al. Molecular cloning, spatiotemporal and functional expression of GABA receptor subunits RDL1 and RDL2 of the rice stem borer Chilo suppressalis[J]. Insect Biochemistry and Molecular Biology, 2018, 94: 18⁃27.
[49] XU G, GU G X, TENG Z W, et al. Identification and expression profiles of neuropeptides and their G protein⁃coupled receptors in the rice stem borer Chilo suppressalis[J]. Scientific Reports, 2016, 6: 28976.
[50] YANG K, LIU Y, NIU D J, et al. Identification of novel odorant binding protein genes and functional characterization of OBP8 in Chilo suppressalis (Walker)[J]. Gene, 2016, 591(2): 425⁃432.
[51] KHUHRO S A, LIAO H, DONG X T, et al. Two general odorant binding proteins display high bindings to both host plant volatiles and sex pheromones in a pyralid moth Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Journal of Asia⁃Pacific Entomology, 2017, 20(2): 521⁃528.
[52] CHANG H T, LIU Y, YANG T, et al. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis[J]. Scientific Reports, 2015, 5: 13093.
[53] HUNTZINGER E, IZAURRALDE E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nature Reviews Genetics, 2011, 12(2): 99⁃110.
[54] HE K, SUN Y, XIAO H M, et al. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis[J]. RNA, 2017, 23(12): 1817⁃1833.
[55] JIANG S, WU H, LIU H J, et al. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis)[J]. Pest Management Science, 2017, 73(7): 1453⁃1461.
[56] HE K, XIAO H M, SUN Y, et al. Transgenic microRNA⁃14 rice shows high resistance to rice stem borer[J]. Plant Biotechnology Journal, 2018: doi: 10.1111/pbi.12990.
[57] KING A M, MACRAE T H. Insect heat shock proteins during stress and diapause[J]. Annual Review of Entomology, 2015, 60: 59⁃75.
[58] SONODA S, FUKUMOTO K, IZUMI Y, et al. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker[J]. Archives of Insect Biochemistry and Physiology, 2006, 63(1): 36⁃47.
[59] QIANG C K, DU Y Z, YU L Y, et al. Cloning and expression of heat shock protein 90 gene from the diapausing larvae of the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae) exposed to temperature stress[J]. Research Journal of Biotechnology, 2010, 5(4): 68⁃75.
[60] 崔亚东, 陆明星, 杜予州. 二化螟热休克蛋白70基因的克隆及热胁迫下的表达分析[J]. 昆虫学报, 2010, 53(8): 841⁃848.
[61] CUI Y D, DU Y Z, LU M X, et al. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress[J]. Journal of Insect Science, 2010, 10(1): 100.
[62] LU M X, LIU Z X, CUI Y D, et al. Expression patterns of three heat shock proteins in Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Annals of the Entomological Society of America, 2014, 107(3): 667⁃673.
[63] LU M X, HUA J, CUI Y D, et al. Five small heat shock protein genes from Chilo suppressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles[J]. Cell Stress & Chaperones, 2014, 19(1): 91⁃104.
[64] PAN D D, LU M X, LI Q Y, et al. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis[J]. Cell Stress & Chaperones, 2018, 23(1): 55⁃64.
[65] 滕子文, 吴顺凡, 李秀花, 等. 二化螟盘绒茧蜂的室内种群饲养和保种 [J]. 浙江农业科学, 2016, 57(12): 2074⁃2077.
[66] TENG Z W, XU G, GAN S Y, et al. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae[J]. Journal of Insect Physiology, 2016, 85: 46⁃56. |
[1] | 陈红, 卢依灵, 许剑锋, 王清清. 临海市不同栽培制度水稻二化螟的发生为害[J]. 浙江农业科学, 2020, 61(7): 1384-1386. |
[2] | 杨强, 潘秋波, 李建群, 朱晓海, 陈永全. 平湖市二化螟重发原因及防控对策[J]. 浙江农业科学, 2020, 61(6): 1127-1129. |
[3] | 张军飞, 邱一蕾, 柴秋子, 余红, 李红亮. 利用植物挥发物提升冬季设施草莓蜜蜂授粉效率[J]. 浙江农业科学, 2019, 60(9): 1570-1572. |
[4] | 叶挺云, 童贤明, 麻理亚. 二化螟固体性诱剂诱芯的诱捕率与持效性[J]. 浙江农业科学, 2019, 60(6): 935-936. |
[5] | 顾国伟, 李章达, 应小军, 冯新军, 袁忠勤. 阿维·甲虫肼等7种药剂对水稻二化螟的防治效果[J]. 浙江农业科学, 2019, 60(6): 942-943. |
[6] | 王德前, 陆建强, 董捷, 黄敏婕. 蛋鸡热应激与细胞凋亡相关基因表达[J]. 浙江农业科学, 2019, 60(12): 2377-2379. |
[7] | 张唯伟, 叶建人, 金磊, 刘亚慧, 朱国念, 张传清. 性信息素诱芯设置密度对稻田二化螟防效及其天敌群落的影响[J]. 浙江农业科学, 2019, 60(11): 1973-1977. |
[8] | 虞根聪, 赖朝晖, 李婷. 象山县水稻耕作制度与二化螟发生关系及防治探讨[J]. 浙江农业科学, 2019, 60(10): 1785-1787. |
[9] | 吴树业, 郑晓微, 范仰东, 莫小平, 卢明和, 何忠林, 许聪蕾. 乙多·甲氧虫防治抗性二化螟效果及技术探讨[J]. 浙江农业科学, 2018, 59(9): 1555-1556. |
[10] | 冯伟, 周宇杰, 何信富, 徐越坚. 四氯虫酰胺单剂及混配对水稻二化螟防效的影响[J]. 浙江农业科学, 2018, 59(7): 1194-1195. |
[11] | 朱丽燕, 周小军, 何晓婵, 王轶. 6种药剂防治茭白二化螟的效果[J]. 浙江农业科学, 2018, 59(5): 763-764. |
[12] | 贾华凑, 盛仙俏, 贾庆利, 廖璇刚. 单季超级稻后期二化螟与稻飞虱兼治的效果[J]. 浙江农业科学, 2018, 59(4): 593-594. |
[13] | 应小军, 魏杰, 顾国伟, 凌小明, 冯新军, 袁忠勤. 甲维·甲虫肼等11种杀虫剂防治水稻二化螟的效果[J]. 浙江农业科学, 2018, 59(3): 492-493. |
[14] | 孙莲, 赖朝晖, 蒋天梅, 虞根聪. 近13年象山县水稻二化螟发生情况及防控对策[J]. 浙江农业科学, 2018, 59(3): 494-495. |
[15] | 王颖, 张勇, 张晨光, 楼润忠, 许新新, 徐小伟. 龙游县水稻二化螟重发原因及防控对策[J]. 浙江农业科学, 2018, 59(12): 2179-2181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||