[1] 袁友泉, 李超超, 许馨月, 等. 草莓FaAP1基因植物表达载体构建及在拟南芥中的超表达[J]. 华中农业大学学报, 2015, 34(5): 13-18. [2] 蔚承祥, 李文金, 张连忠, 等. 大果四季草莓新品种: 赛娃[J]. 落叶果树, 2001, 33(5): 18-19. [3] GUTTERIDGE J M C. Age pigments and free radicals: fluorescent lipid complexes formed by iron-and copper-containing proteins[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1985, 834(2): 144-148. [4] SERÇE S, HANCOCK J F. The temperature and photoperiod regulation of flowering and runnering in the strawberries, Fragaria chiloensis, F. virginiana, and F. × ananassa[J]. Scientia Horticulturae, 2005, 103(2): 167-177. [6] STEWART P J, FOLTA K M.A review of photoperiodic flowering research in strawberry (Fragaria spp.)[J]. Critical Reviews in Plant Sciences, 2010, 29(1): 1-13. [7] BLAKE P S, TAYLOR D R, CRISP C M, et al.Identification of endogenous gibberellins in strawberry, including the novel gibberellins GA123, GA124 and GA125[J]. Phytochemistry, 2000, 55(8): 887-890. [8] 兰树斌, 李建国. 植物LFY基因的研究进展[J]. 广西农业生物科学, 2007, 26(S1): 132-137. [9] 刘月学, 邹冬梅, 李贺, 等. 草莓LFY同源基因的克隆及其表达分析[J]. 园艺学报, 2012, 39(5): 861-868. [10] LEE H.The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18): 2366-2376. [11] ONOUCHI H, IGEO M I, PERILLEUX C, et al.Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. The Plant Cell, 2000, 12(6):885-900. [12] SAMACH A, ONOUCHI H, GOLD S E, et al.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471):1613-1616. [13] LEI H J, YUAN H Z, LIU Y, et al.Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry[J]. Gene, 2013, 531(2): 158-167. [14] 丁峰, 彭宏祥, 李鸿莉, 等. 植物AP1基因研究进展[J]. 亚热带植物科学, 2011, 40(1): 85-89. [15] 邹冬梅, 刘月学, 张志宏, 等. 草莓AP1同源基因的克隆、表达及启动子分析[J]. 中国农业科学, 2012, 45(10): 1972-1981. [16] BOHLENIUS H.CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776): 1040-1043. [17] FLACHOWSKY H, HANKE M V, PEIL A, et al.A review on transgenic approaches to accelerate breeding of woody plants[J]. Plant Breeding, 2009, 128(3): 217-226. [18] NAKANO Y, HIGUCHI Y, YOSHIDA Y, et al.Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria×ananassa[J]. Journal of Plant Physiology, 2015, 177: 60-66. [19] 胡洋, 张凯, 高玉荣, 等. 野生森林草莓FvFT基因克隆与功能分析[C]//中国园艺学会2014年学术年会论文集. 江西南昌, 2014: 94. [20] 安钢力. 实时荧光定量PCR技术的原理及其应用[J]. 中国现代教育装备, 2018(21): 19-21. [21] 傅永福, 孟繁静. 植物成花转变过程的基因调控[J]. 植物生理学通讯, 1997, 33(5): 393-400. [22] RATCLIFFE O J, BRADLEY D J, COEN E S.Separation of shoot and floral identity in Arabidopsis[J]. Development, 1999, 126(6):1109-1120. [23] ARAKI T.Transition from vegetative to reproductive phase[J]. Current Opinion in Plant Biology, 2001, 4(1): 63-68. [24] BATTEY N H, TOOKE F.Molecular control and variation in the floral transition[J]. Current Opinion in Plant Biology, 2002, 5(1): 62-68. [25] WEIGEL D, ALVAREZ J, SMYTH D R, et al.LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69(5): 843-859. [26] WEIGEL D, NILSSON O.A developmental switch sufficient for flower initiation in diverse plants[J]. Nature, 1995, 377(6549): 495-500. [27] MOYROUD E, KUSTERS E, MONNIAUX M, et al.LEAFY blossoms[J]. Trends in Plant Science, 2010, 15(6):346-352. [28] DING F, ZHANG S W, CHEN H B, et al.Functional analysis of a homologue of the FLORICAULA/LEAFY gene in Litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process[J]. Genes & Genomics, 2018, 40(12): 1259-1267. [29] MOON J, SUH S, LEE H, et al.TheSOC1MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5): 613-623. [30] RICHTER R, KINOSHITA A, VINCENT C, et al.Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications[J]. PLoS Genetics, 2019, 15(4): e1008065. [31] PARCY F, NILSSON O, BUSCH M A, et al.A genetic framework for floral patterning[J]. Nature, 1998, 395(6702): 561-566. [32] ZHANG S S, LU S J, YI S S, et al.Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree[J]. Plant Science, 2019, 280: 206-218. [33] VALOROSO M C, CENSULLO M C, ACETO S.The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae)[J]. PLoS One, 2019, 14(3): e0213185. [34] NOY-PORAT T, COHEN D, MATHEW D, et al.Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition[J]. Journal of Experimental Botany, 2013, 64(11): 3273-3284. [35] VARKONYI-GASIC E, MOSS S M A, VOOGD C, et al. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit[J]. New Phytologist, 2013, 198(3): 732-746. [36] FU J X, WANG L L, WANG Y, et al.Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium[J]. Plant Physiology and Biochemistry, 2014, 74: 230-238. |