[1] |
张金波, 白雪, 钟健, 等. 介孔二氧化硅纳米粒子的合成及其在生物医学中的应用[J]. 生命的化学, 2018, 38(5): 707-712.
|
[2] |
汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6): 933-942.
|
[3] |
裴福云, 董超文, 陈文哲, 等. 纳米硅肥的制备及对苋菜生长的影响[J]. 园艺与种苗, 2015(6): 12-17.
|
[4] |
宁东峰, 梁永超. 硅调节植物抗病性的机理:进展与展望[J]. 植物营养与肥料学报, 2014, 20(5): 1280-1287.
|
[5] |
李晓冰, 于广武, 王少华, 等. 生物有机无机生态肥料及其发展前景(上)[J]. 肥料与健康, 2020(1): 66-69.
|
[6] |
KUREPA J, PAUNESKU T, VOGT S, et al. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Letters, 2010, 10(7): 2296-2302.
|
[7] |
LIU Q L, CHEN B, WANG Q L, et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Letters, 2009, 9(3): 1007-1010.
|
[8] |
NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372-386.
|
[9] |
LU X H, SUN D Q, ZHANG X M, et al. Stimulation of photosynthesis and enhancement of growth and yield in Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles[J]. Plant Physiology and Biochemistry, 2020, 156: 566-577.
|
[10] |
YUVAKKUMAR R, ELANGO V, RAJENDRAN V, et al. Influence of nanosilica powder on the growth of maize crop (Zea mays L.)[J]. International Journal of Green Nanotechnology, 2011, 3(3): 180-190.
|
[11] |
梅文宇, 付荣杰, 刘林忠, 等. 纳米二氧化硅对黄瓜幼苗生长的影响[J]. 长江蔬菜, 2022(6): 7-9.
|
[12] |
刘建华, 钱瑭璜, 彭昭良, 等. 纳米硅对中华结缕草种子萌发和幼苗期生长的影响[J]. 天津农业科学, 2017, 23(4): 6-9.
|
[13] |
STAMPOULIS D, SINHA S K, WHITE J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009, 43(24): 9473-9479.
|
[14] |
SLOMBERG D L, SCHOENFISCH M H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana[J]. Environmental Science & Technology, 2012, 46(18): 10247-10254.
|
[15] |
李博, 陶功胜, 谢寅峰, 等. 叶面喷施纳米SiO2对髯毛箬竹的生理调节效应[J]. 南京林业大学学报(自然科学版), 2012, 36(4): 161-164.
|
[16] |
王红. 几种土壤改良剂对桃和草莓生长的影响[D]. 泰安: 山东农业大学, 2020.
|
[17] |
冷明珠, 金月, 童喻浩. 纳米硅肥在水稻上的应用效果[J]. 江西农业, 2021(16): 21-22.
|
[18] |
SURIYAPRABHA R, KARUNAKARAN G, YUVAKKUMAR R, et al. Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions[J]. Current Nanoscience, 2012, 8(6): 902-908.
|
[19] |
WEI C X, ZHANG Y B, GUO J, et al. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus[J]. Journal of Environmental Sciences, 2010, 22(1): 155-160.
|
[20] |
王世华. 叶面喷施纳米硅增强水稻抗重金属毒害机理研究[D]. 南京: 南京农业大学, 2007.
|
[21] |
闫龙翔, 霍晓玉, 阚雨晨, 等. 新型含硒纳米硅肥在水稻上的施用效果初探[J]. 上海农业科技, 2021(3): 85-87.
|
[22] |
周其耀, 倪元君, 徐顺安, 等. 叶面调理剂对浙江东部镉污染农田水稻主栽品种安全生产的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 768-776.
|
[23] |
SUCIATY T, PURNOMO D, SAKYA A T, et al. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield[J]. IOP Conference Series: Earth and Environmental Science, 2018, 129: 012009.
|
[24] |
马肖, 刘木兰, 王峰, 等. 缓释肥与硅肥配施对油菜产量及菌核病抗性的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(2): 144-150.
|
[25] |
DERBALAH A, SHENASHEN M, HAMZA A, et al. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato[J]. Egyptian Journal of Basic and Applied Sciences, 2018, 5(2): 145-150.
|
[26] |
刘俊渤, 常海波, 马景勇, 等. 纳米SiO2对水稻稻瘟病的抗病效应及对水稻生长发育的影响[J]. 吉林农业大学学报, 2012, 34(2): 157-161, 165.
|
[27] |
刘显峰. 微纳米硅肥在水稻种植上的应用[J]. 特种经济动植物, 2021, 24(9): 112-114.
|
[28] |
ZOHRA E, IKRAM M, OMAR A A, et al. Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: a comprehensive insight on the mechanistic approach and future perspectives[J]. Green Processing and Synthesis, 2021, 10(1): 456-475.
|
[29] |
龚束芳, 刘阳, 速馨逸, 等. 纳米硅肥对远东芨芨草幼苗模拟抗旱的影响[J]. 草业科学, 2018, 35(12): 2924-2930.
|
[30] |
张聪聪, 张静怡, 李杨, 等. 纳米硅喷施对玉米抗旱性和抗虫性的影响[J]. 河北师范大学学报(自然科学版), 2017, 41(4): 348-353.
|
[31] |
GHORBANPOUR M, MOHAMMADI H, KARIMAN K. Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress[J]. Environmental Science: Nano, 2020, 7(2): 443-461.
|
[32] |
EL-DENGAWY E, EL-ABBASY U, EL-GOBBA M. Influence of nano-silicon treatment on growth behavior of ‘Sukkary’ and ‘Gahrawy’ mango root-stocks under salinity stress[J]. Journal of Plant Production, 2021, 12(1): 49-61.
|
[33] |
崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10): 1162-1165.
|
[34] |
QADOS A, MOFTAH A. Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions[J]. American Journal of Experimental Agriculture, 2015, 5(6): 509-524.
|
[35] |
吴长安. 叶面喷纳米硅对水稻砷吸收的抑制作用研究[J]. 广东化工, 2018, 45(15): 96-96, 80.
|
[36] |
郭少雪. 纳米硅沉积缓解豌豆根边缘细胞铝毒的作用[D]. 佛山: 佛山科学技术学院, 2018.
|
[37] |
张夫道, 赵秉强, 张骏, 等. 纳米肥料研究进展与前景[J]. 植物营养与肥料学报, 2002, 8(2): 254-255.
|
[38] |
KIBBEY T C G, STREVETT K A. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings[J]. Chemosphere, 2019, 221: 703-707.
|
[39] |
CHEN ZIH-AN, WU S H, CHEN P L, et al. Critical features for mesoporous silica nanoparticles encapsulated into erythrocytes[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4790-4798.
|
[40] |
VERMA S, DAS A, GANTAIT S, et al. Green synthesis of carbon-based nanomaterials and their applications in various sectors: a topical review[J]. Carbon Letters, 2021, 32: 365-393.
|
[41] |
RANA R, SIDDIQUI M, SKALICKY M, et al. Prospects of nanotechnology in improving the productivity and quality of horticultural crops[J]. Horticulturae, 2021, 7(10): 332.
|
[42] |
SHEIKHALIPOUR M, ESMAIELPOUR B, BEHNAMIAN M, et al. Chitosan-selenium nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon[J]. Nanomaterials, 2021, 11(3): 684.
|