浙江农业科学 ›› 2024, Vol. 65 ›› Issue (10): 2514-2522.DOI: 10.16178/j.issn.0528-9017.20230282
刘新海1(), 闫飞宇1, 邓江霞1, 张叶1, 张国良1,2,*(
)
收稿日期:
2023-03-17
出版日期:
2024-10-11
发布日期:
2024-10-25
通讯作者:
张国良(1976—),男,江苏阜宁人,教授,博士,主要从事农产品安全与环境等方面的研究,E-mail:hgzgl@126.com。
作者简介:
刘新海(1996—),男,甘肃天水人,硕士,主要从事土壤环境方面的研究,E-mail:2462230741@qq.com。
基金资助:
LIU Xinhai1(), YAN Feiyu1, DENG Jiangxia1, ZHANG Ye1, ZHANG Guoliang1,2,*(
)
Received:
2023-03-17
Online:
2024-10-11
Published:
2024-10-25
摘要:
生物质炭是生物废弃物在低温限氧条件下热裂解而成的富碳材料,具有独特的表面化学性质及复杂的孔结构,对环境介质中的有机污染物具有很强的吸附能力。文章综述了土壤有机污染物污染现状及危害、生物质炭的制备及优势特性、生物质炭的吸附机理、影响生物质炭对土壤有机污染吸附的因素及生物质炭在有机污染土壤修复中的应用等,并展望了生物质炭吸附土壤有机污染物的未来研究方向。
中图分类号:
刘新海, 闫飞宇, 邓江霞, 张叶, 张国良. 生物质炭吸附土壤有机污染物的研究进展[J]. 浙江农业科学, 2024, 65(10): 2514-2522.
LIU Xinhai, YAN Feiyu, DENG Jiangxia, ZHANG Ye, ZHANG Guoliang. Research progress on biochar adsorption of soil organic pollutants[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(10): 2514-2522.
项目 | 活性炭 | 生物质炭 | 硅胶 | 优势比较 |
---|---|---|---|---|
主要原料 | 煤、木料、硬果壳、果核、树脂等 | 农作物秸秆、木材、畜禽粪便、市政废物等 | 碱金属硅酸盐 | 相比于活性炭和硅胶,生物质炭原料来源广泛 |
元素组成 | 主要以C(80%~90%)为主 | C(>60%)、H、O、N、S、P、K、Ca等 | SiO2 | 相比于活性炭和硅胶,生物质炭中有些元素利于土壤中植物生长 |
生产条件 | 生产条件要求高,生产成本高 | 生产条件简单,生产成本低 | 生产条件要求高,生产成本高 | 与活性炭和硅胶相比,生物质炭生产过程简单,成本低 |
制备温度 | 600~900 ℃ | <700 ℃ | 300 ℃ | 相比于活性炭和硅胶,生物质炭制备温度较低 |
作用原理 | 表面吸附、催化作用 | 静电作用、表面吸附、化学作用 | 物理和化学作用 | 相比于活性炭和硅胶,生物质炭具有多种作用,对多种污染物吸附能力更强 |
性能特点 | 孔隙结构发达、比表面积大(500~3 000 m2·g-1) | 孔隙结构发达、比表面积大、稳定性较高 | 具有开放的多孔结构,比表面积很大 | 与生物质炭和硅胶相比,活性炭的比表面积更大,吸附性能更强 |
表1 生物质炭与活性炭、硅胶的性能比较
Table 1 Comparison of properties of biochar, activated carbon and silica gel
项目 | 活性炭 | 生物质炭 | 硅胶 | 优势比较 |
---|---|---|---|---|
主要原料 | 煤、木料、硬果壳、果核、树脂等 | 农作物秸秆、木材、畜禽粪便、市政废物等 | 碱金属硅酸盐 | 相比于活性炭和硅胶,生物质炭原料来源广泛 |
元素组成 | 主要以C(80%~90%)为主 | C(>60%)、H、O、N、S、P、K、Ca等 | SiO2 | 相比于活性炭和硅胶,生物质炭中有些元素利于土壤中植物生长 |
生产条件 | 生产条件要求高,生产成本高 | 生产条件简单,生产成本低 | 生产条件要求高,生产成本高 | 与活性炭和硅胶相比,生物质炭生产过程简单,成本低 |
制备温度 | 600~900 ℃ | <700 ℃ | 300 ℃ | 相比于活性炭和硅胶,生物质炭制备温度较低 |
作用原理 | 表面吸附、催化作用 | 静电作用、表面吸附、化学作用 | 物理和化学作用 | 相比于活性炭和硅胶,生物质炭具有多种作用,对多种污染物吸附能力更强 |
性能特点 | 孔隙结构发达、比表面积大(500~3 000 m2·g-1) | 孔隙结构发达、比表面积大、稳定性较高 | 具有开放的多孔结构,比表面积很大 | 与生物质炭和硅胶相比,活性炭的比表面积更大,吸附性能更强 |
[1] | GOMES L, SIMÕES S, DALLA NORA E, et al. Agricultural expansion in the Brazilian cerrado: increased soil and nutrient losses and decreased agricultural productivity[J]. Land, 2019, 8(1): 12. |
[2] | ÇOK I, MAZMANCI B, MAZMANCI M A, et al. Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean City Mersin, Turkey[J]. Environment International, 2012, 40: 63-69. |
[3] | COVACI A, HURA C, SCHEPENS P. Selected persistent organochlorine pollutants in Romania[J]. The Science of the Total Environment, 2001, 280(1/2/3): 143-152. |
[4] | KIM E J, PARK Y M, PARK J E, et al. Distributions of new Stockholm Convention POPs in soils across South Korea[J]. The Science of the Total Environment, 2014, 476/477: 327-335. |
[5] | POKHREL B, GONG P, WANG X P, et al. Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal[J]. Chemosphere, 2018, 200: 532-541. |
[6] | ZHU Y F, MA J, CHEN F, et al. Effective alleviation of Cd stress to microbial communities in mining reclamation soils by thiourea-modified biochar amendment[J]. Pedosphere, 2022, 32(6): 866-875. |
[7] | ZHENG B H, WANG L P, LEI K, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River Estuary and the adjacent area, China[J]. Chemosphere, 2016, 149: 91-100. |
[8] | NAZAROVA E A, NAZAROV A V, EGOROVA D O, et al. Influence of destructive bacteria and red clover (trifolium pratense L.) on the pesticides degradation in the soil[J]. Environmental Geochemistry and Health, 2022, 44(2): 399-408. |
[9] | CHARUSIRI W, VITIDSANT T. Biofuel production via the pyrolysis of sugarcane (Saccharum officinarum L.) leaves: characterization of the optimal conditions[J]. Sustainable Chemistry and Pharmacy, 2018, 10: 71-78. |
[10] | ZHANG Y F, XIE X Y, ZHAO J, et al. The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis[J]. Renewable Energy, 2020, 151: 255-262. |
[11] | JUNG J M, OH J I, BAEK K, et al. Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst[J]. Energy Conversion and Management, 2018, 165: 628-633. |
[12] | LIU Y X, YAO S, WANG Y Y, et al. Bio- and hydrochars from rice straw and pig manure: inter-comparison[J]. Bioresource Technology, 2017, 235: 332-337. |
[13] | ZHU Y, YI B J, YUAN Q X, et al. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar[J]. RSC Advances, 2018, 8(36): 19917-19929. |
[14] | JAYAWARDHANA Y, MAYAKADUWA S S, KUMARATHILAKA P, et al. Municipal solid waste-derived biochar for the removal of benzene from landfill leachate[J]. Environmental Geochemistry and Health, 2019, 41(4): 1739-1753. |
[15] | ZHU X D, LIU Y C, ZHOU C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 2014, 77: 627-636. |
[16] | LI L D, LONG A, FOSSUM B, et al. Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: a meta-analysis[J]. Soil Use and Management, 2023, 39(1): 43-52. |
[17] | BATAILLOU G, LEE C, MONNIER V, et al. Cedar wood-based biochar: properties, characterization, and applications as anodes in microbial fuel cell[J]. Applied Biochemistry and Biotechnology, 2022, 194(9): 4169-4186. |
[18] | WANG P, ZHANG J L, SHAO Q J, et al. Physicochemical properties evolution of chars from palm kernel shell pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(3): 1271-1280. |
[19] | WANG K F, PENG N, LU G N, et al. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar[J]. Waste and Biomass Valorization, 2020, 11(2): 613-624. |
[20] | JIA L, FAN B G, YAO Y X, et al. Study on the elemental mercury adsorption characteristics and mechanism of iron-based modified biochar materials[J]. Energy & Fuels, 2018, 32(12): 12554-12566. |
[21] | LI H X, LU X Q, XU Y, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019, 352: 96-103. |
[22] | LI J C, YUAN S J, WANG W, et al. Adsorption characteristics of 4-hydroxy-3-aminophenylarsonic acid (HAPA) onto anaerobic granular sludge[J]. Desalination and Water Treatment, 2015: 1-12. |
[23] | CHIN-PAMPILLO J S, ALFARO-VARGAS A, ROJAS R, et al. Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses[J]. Biomass Conversion and Biorefinery, 2021, 11(5): 1775-1785. |
[24] | PARK J H, CHOPPALA G K, BOLAN N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1): 439-451. |
[25] | YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. |
[26] | AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. The Science of the Total Environment, 2015, 532: 112-126. |
[27] | 张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913-925. |
[28] | 刘洋, 郭少青, 孙万兴, 等. 重质沥青基活性炭的制备研究[J]. 现代化工, 2022, 42(8): 146-150. |
[29] | SESSA F, VEEYEE K F, CANU P. Optimization of biochar quality and yield from tropical timber industry wastes[J]. Waste Management, 2021, 131: 341-349. |
[30] | CHIOU C T, FREED V H, SCHMEDDING D W, et al. Partition coefficient and bioaccumulation of selected organic chemicals[J]. Environmental Science & Technology, 1977, 11(5): 475-478. |
[31] | CHIOU C T, LEE J F, BOYD S A. The surface area of soil organic matter[J]. Environmental Science & Technology, 1990, 24(8): 1164-1166. |
[32] | CHIOU C T, PETERS L J, FREED V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206(4420): 831-832. |
[33] | CHIOU C T, RUTHERFORD D W, MANES M. Sorption of nitrogen and ethylene glycol monoethyl ether (EGME) vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data[J]. Environmental Science & Technology, 1993, 27(8): 1587-1594. |
[34] | FU Q L, HE J Z, BLANEY L, et al. Sorption of roxarsone onto soils with different physicochemical properties[J]. Chemosphere, 2016, 159: 103-112. |
[35] | HUANG W H, CHEN B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal[J]. Journal of Environmental Sciences (China), 2010, 22(10): 1586-1594. |
[36] | 陈宝梁, 周丹丹, 朱利, 等. 生物炭质吸附剂对水中有机污染物的吸附作用及机理[J]. 中国科学, 2008, 38(6):530-537. |
[37] | CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17): 4649-4655. |
[38] | STORCK S, BRETINGER H, MAIER W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis[J]. Applied Catalysis A: General, 1998, 174(1/2): 137-146. |
[39] | SCHREITER I J, SCHMIDT W, SCHÜTH C. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: conclusions from single- and bi-solute experiments[J]. Chemosphere, 2018, 203: 34-43. |
[40] | 李晓军, 李培军, 蔺昕. 土壤中难降解有机污染物锁定机理研究进展[J]. 应用生态学报, 2007, 18(7): 1624-1630. |
[41] | 李莉, 苗明升, 丁俊男, 等. 土壤中锁定残留芘在体外消化系统中的生物可给性[J]. 生态毒理学报, 2009, 4(5): 634-640. |
[42] | NGUYEN T H, CHO H H, POSTER D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J]. Environmental Science & Technology, 2007, 41(4): 1212-1217. |
[43] | 张默, 贾明云, 卞永荣, 等. 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理[J]. 土壤学报, 2015, 52(5): 1106-1115. |
[44] | ZHANG F S, LI Y X, ZHANG G X, et al. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil[J]. Environmental Science and Pollution Research, 2017, 24(10): 9575-9584. |
[45] | KARANFIL T, KILDUFF J E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. priority pollutants[J]. Environmental Science & Technology, 2000, 34(11): 2372. |
[46] | PAULSEN P D, MOORE B C, CANNON F S. Applicability of adsorption equations to argon, nitrogen and volatile organic compound adsorption onto activated carbon[J]. Carbon, 1999, 37(11): 1843-1853. |
[47] | MAHAJAN O P, WALKER P L Jr. Effect of inorganic matter removal from coals and chars on their surface areas[J]. Fuel, 1979, 58(5): 333-337. |
[48] | WEBER W J, HUANG W L. A distributed reactivity model for sorption by soils and sediments. 4. intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environmental Science & Technology, 1996, 30(3): 881-888. |
[49] | XING B S, PIGNATELLO J J, GIGLIOTTI B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environmental Science & Technology, 1996, 30(8): 2432-2440. |
[50] | XING B S, PIGNATELLO J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter[J]. Environmental Science & Technology, 1997, 31(3): 792-799. |
[51] | ZHU L Z, CHEN B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water[J]. Environmental Science & Technology, 2000, 34(14): 2997-3002. |
[52] | CHIOU C T, CHENG J Z, HUNG W N, et al. Resolution of adsorption and partition components of organic compounds on black carbons[J]. Environmental Science & Technology, 2015, 49(15): 9116-9123. |
[53] | 汪艳如, 侯杰发, 郭建华, 等. 冻融循环对牦牛粪生物炭吸附氨氮的影响[J]. 农业环境科学学报, 2017, 36(3): 566-573. |
[54] | 何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11): 3376-3382. |
[55] | LEE J W, KIDDER M, EVANS B R, et al. Characterization of biochars produced from cornstovers for soil amendment[J]. Environmental Science & Technology, 2010, 44(20): 7970-7974. |
[56] | ZHU D Q, KWON S, PIGNATELLO J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J]. Environmental Science & Technology, 2005, 39(11): 3990-3998. |
[57] | SAITO Y, MORI M, SHIDA S, et al. Formaldehyde adsorption and desorption properties of wood-based charcoal[J]. Journal of the Japan Wood Researh Society, 2000, 46 (6): 596-601. |
[58] | LI M Y, SUN W J, WANG Y J, et al. Air permeability of biochar-amended clay cover[J]. Arabian Journal of Geosciences, 2021, 14(8): 732. |
[59] | 冯晓娜, 杨芷, 孙洁, 等. 有机污染物对发光菌和鱼的毒性相关性研究[J]. 生态毒理学报, 2017, 12(3): 687-694. |
[60] | YANG Y N, SHENG G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16): 3635-3639. |
[61] | JONKER M T O, KOELMANS A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science & Technology, 2002, 36(17): 3725-3734. |
[62] | CORNELISSEN G, ELMQUIST M, GROTH I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environmental Science & Technology, 2004, 38(13): 3574-3580. |
[63] | BORNEMANN L C, KOOKANA R S, WELP G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood[J]. Chemosphere, 2007, 67(5): 1033-1042. |
[64] | XIAO B H, YU Z Q, HUANG W L, et al. Black carbon and kerogen in soils and sediments. 2. their roles in equilibrium sorption of less-polar organic pollutants[J]. Environmental Science & Technology, 2004, 38(22): 5842-5852. |
[65] | MIRALLES-CUEVAS S, AUDINO F, OLLER I, et al. Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photoFenton, photo-Fenton-like Fe (III)-EDDS complex and ozonation)[J]. Separation and Purification Technology, 2014, 122: 515-522. |
[66] | CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. |
[67] | ZHENG W, GUO M X, CHOW T, et al. Sorption properties of greenwaste biochar for two triazine pesticides[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 121-126. |
[68] | 代镇, 李伟, 韩娟, 等. 生物炭对土持水能力的影响[J]. 干旱地区农业研究, 2019, 37(6): 265-273. |
[69] | 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16-25. |
[70] | JORDÁ J D, TENT-MANCLÚS J E, CERDÁN M, et al. Characterisation of clays from Alicante Province (SE Spain) for use in the recovery of degraded soils[J]. Environmental Geochemistry and Health, 2022, 44(1): 247-255. |
[71] | 马莉, 吕宁, 冶军, 等. 生物碳对灰漠土有机碳及其组分的影响[J]. 中国生态农业学报, 2012, 20(8): 976-981. |
[72] | WANG J Y, PAN X J, LIU Y L, et al. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and Soil, 2012, 360(1): 287-298. |
[73] | 周志红, 李心清, 邢英, 等. 生物炭对土壤氮素淋失的抑制作用[J]. 地球与环境, 2011, 39(2): 278-284. |
[74] | 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 979-984. |
[75] | YANG Y N, CHUN Y, SHENG G Y, et al. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon[J]. Langmuir, 2004, 20(16): 6736-6741. |
[76] | KALDERIS D, KAYAN B, AKAY S, et al. Adsorption of 2, 4-dichlorophenol on paper sludge/wheat husk biochar: process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2222-2231. |
[77] | ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320. |
[78] | GELL K, VAN GROENIGEN J, CAYUELA M L. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2017-2025. |
[79] | ACIEGO PIETRI J C, BROOKES P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861. |
[80] | ZHEN M N, TANG J C, LI C, et al. Rhamnolipid-modified biochar-enhanced bioremediation of crude oil-contaminated soil and mediated regulation of greenhouse gas emission in soil[J]. Journal of Soils and Sediments, 2021, 21(1): 123-133. |
[81] | AMBADE B, SETHI S S, GIRI B, et al. Characterization, behavior, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the EstuarySediments[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(2): 243-252. |
[82] | GOMEZ-EYLES J L, SIZMUR T, COLLINS C D, et al. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements[J]. Environmental Pollution, 2011, 159(2): 616-622. |
[83] | CHEN B L, YUAN M X, QIAN L B. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers[J]. Journal of Soils and Sediments, 2012, 12(9): 1350-1359. |
[84] | RYCHEN G, JURJANZ S, FOURNIER A, et al. Exposure of ruminants to persistent organic pollutants and potential of decontamination[J]. Environmental Science and Pollution Research, 2014, 21(10): 6440-6447. |
[85] | WANG Y, WANG L, WANG Y J, et al. Measuring the bioavailability of polychlorinated biphenyls to earthworms in soil enriched with biochar or activated carbon using triolein-embedded cellulose acetate membrane[J]. Journal of Soils and Sediments, 2016, 16(2): 527-536. |
[86] | DENYES M J, LANGLOIS V S, RUTTER A, et al. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida[J]. The Science of the Total Environment, 2012, 437: 76-82. |
[87] | GU J Q, ZHOU W Q, JIANG B Q, et al. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil[J]. Chemosphere, 2016, 145: 431-437. |
[88] | DENG L Y, WU C Y, FU L Y, et al. Preparation of biochar and its adsorbing performance evaluation in the petroleum hydrocarbon[J]. Biomass Conversion and Biorefinery, 2022:1-10. |
[89] | YOUSAF U, ALI KHAN A H, FAROOQI A, et al. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil[J]. Chemosphere, 2022, 286(Pt 2): 131782. |
[90] | KEERTHANAN S, JAYASINGHE C, BOLAN N, et al. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil[J]. Chemosphere, 2022, 297: 134073. |
[91] | YANG X B, YING G G, PENG P G, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7915-7921. |
[92] | LI W T, SHAN R F, FAN Y N, et al. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil[J]. Environmental Science and Pollution Research, 2021, 28(4): 4503-4514. |
[1] | 杨晓磊, 王站付, 陈宇佳, 陆萍, 刘哲辉, 严淑娴, 金思哲. 镉污染稻田中农艺措施类安全利用综合技术研究[J]. 浙江农业科学, 2024, 65(9): 2023-2027. |
[2] | 张维玲, 葛芙蓉, 徐静高, 郑旭芊, 叶正钱. 土壤调理剂协同有机肥对茶园土壤肥力及茶叶安全生产影响研究[J]. 浙江农业科学, 2024, 65(9): 2069-2074. |
[3] | 郑锡良, 孙鹂, 戚行江, 梁森苗, 俞浙萍, 张启, 张淑文. 杨梅果实品质指标与土壤肥力因子的相关性分析[J]. 浙江农业科学, 2024, 65(9): 2112-2118. |
[4] | 杨建强, 高嘉瑞, 柳超超, 王巧玲. 不同用量土壤改良剂对碱茅生长及土壤养分的影响[J]. 浙江农业科学, 2024, 65(9): 2138-2142. |
[5] | 刘莹, 常珺枫, 李陈, 黄文星, 施俊生, 徐湘博, 马友华. 地膜污染对农田土壤与作物影响及其控制研究[J]. 浙江农业科学, 2024, 65(9): 2224-2230. |
[6] | 孙鹂, 郑锡良, 梁森苗, 张启, 俞浙萍, 戚行江, 张淑文. 影响不同杨梅品种果实品质形成的土壤因子差异分析[J]. 浙江农业科学, 2024, 65(8): 1826-1832. |
[7] | 温炜, 潘建清, 俞波, 解静, 马军伟, 杨艳, 王峰. 长兴县葡萄耕地主推酸化治理模式应用效果研究[J]. 浙江农业科学, 2024, 65(8): 1838-1842. |
[8] | 雷春松, 张素娥, 邹文华, 钟利军, 叶正钱. 茶树枝生物质炭对农田土壤肥力与水稻镉吸收和转运的影响[J]. 浙江农业科学, 2024, 65(8): 1860-1866. |
[9] | 沈建国, 郑冬明, 楼玲, 王京文, 顾万帆, 李阿根. 微生物复合肥替代常规化肥及其减量施用对水稻生长与土壤肥力的影响[J]. 浙江农业科学, 2024, 65(8): 1867-1872. |
[10] | 李立军, 仲惟, 李涛. 固定化微生物技术在小秦岭金矿区农田土壤修复中的应用[J]. 浙江农业科学, 2024, 65(8): 1950-1956. |
[11] | 方琪钧, 陈胤再. 施用鱼虾下脚料有机肥对水稻生产的影响[J]. 浙江农业科学, 2024, 65(7): 1539-1542. |
[12] | 张文勇, 陈光辉, 陈照明. 不同施肥模式对双季稻产量及土壤肥力的影响[J]. 浙江农业科学, 2024, 65(7): 1547-1550. |
[13] | 韩晓君, 乔志刚. 生物质炭对水稻微量元素吸收积累的影响[J]. 浙江农业科学, 2024, 65(7): 1551-1554. |
[14] | 吴林土, 徐火忠, 李贵松, 叶春福, 何金法, 王允祥, 潘瑛洁, 王月圆, 叶正钱. 不同钝化剂对茶园土壤及茶叶品质的影响[J]. 浙江农业科学, 2024, 65(7): 1571-1577. |
[15] | 朱真令, 陈德, 叶雪珠. 秸秆炭化还田标准化发展现状[J]. 浙江农业科学, 2024, 65(7): 1709-1713. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||