[1] |
ZHU C Y, ZHU F X, WANG F W, et al. Comparison of persulfate activation and Fenton reaction in remediating an organophosphorus pesticides-polluted soil[J]. Pedosphere, 2017, 27(3): 465-474.
|
[2] |
WANG J W, TENG Y G, ZHANG C X, et al. Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: Kinetics and transformation pathway[J]. Chemosphere, 2019, 226: 858-864.
|
[3] |
AGGAG S, MOUNIR S, YACOUT M M, et al. Organophosphorus pesticides biodegradation by three bacterial Genera and their protoplast fusants[J]. Journal of Applied Biological Sciences, 2021, 11: 29-32.
|
[4] |
QIN Y, WU Y, CHEN G J, et al. Dissociable photoelectrode materials boost ultrasensitive photoelectrochemical detection of organophosphorus pesticides[J]. Analytica Chimica Acta, 2020, 1130: 100-106.
|
[5] |
CHU Y H, LI Y, WANG Y T, et al. Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations[J]. Food Chemistry, 2018, 254: 80-86.
|
[6] |
ROVINA K, VONNIE J M, MANTIHAL S, et al. Development of films based on tapioca starch/gold nanoparticles for the detection of organophosphorus pesticides[J]. Journal of Consumer Protection and Food Safety, 2021, 16(2): 143-152.
|
[7] |
王志刚, 费荣杰. 有机磷农药检测方法研究及进展[J]. 化学试剂, 2023, 45(3): 141-147.
|
[8] |
吴子彦, 邱钦云, 王彦沣, 等. 有机磷农药在农田中的残留降解及其土壤生态毒理学研究[J]. 广州化工, 2021, 49(23): 28-30.
|
[9] |
PUNDIR C S, MALIK A. Bio-sensing of organophosphorus pesticides: a review[J]. Biosensors and Bioelectronics, 2019, 140: 111348.
|
[10] |
XIE M J, ZHAO F G, ZHANG Y P, et al. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs[J]. Food Control, 2022, 131: 108399.
|
[11] |
APARICIO V C, de GERÓNIMO E, MARINO D, et al. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins[J]. Chemosphere, 2013, 93(9): 1866-1873.
|
[12] |
SOGORB M A, VILANOVA E, CARRERA V. Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings[J]. Toxicology Letters, 2004, 151(1): 219-233.
|
[13] |
王连珠, 周昱, 陈泳, 等. QuEChERS样品前处理-液相色谱-串联质谱法测定蔬菜中66种有机磷农药残留量方法评估[J]. 色谱, 2012, 30(2): 146-153.
|
[14] |
肖海军, 张偎, 陈孝权, 等. 分散固相萃取-气质联用法同时检测茶叶中32种农药多残留[J]. 西南师范大学学报(自然科学版), 2015, 40(12): 27-32.
|
[15] |
闫蕊, 邵明媛, 鞠福龙, 等. 加速溶剂萃取-高效液相色谱串联质谱法测定土壤中农药残留[J]. 分析化学, 2013, 41(2): 315-316.
|
[16] |
张焱屾, 汪金生, 贾乃峰, 等. 农药残留检测的前处理技术[J]. 现代农业科技, 2011(2): 27-28.
|
[17] |
何佩雯, 赵海誉, 杜钢, 等. 气相色谱技术在中药农药残留检测中的应用[J]. 中国实验方剂学杂志, 2010, 16(2): 126-134.
|
[18] |
赵建伟, 岳永德, 汤锋, 等. 气相色谱法测定蔬菜、水果中多种有机磷农药残留[J]. 安徽农业大学学报, 2010, 37(1): 82-87.
|
[19] |
罗庆, 孙丽娜. 超声波提取-GC/MS法同时测定农用土壤中有机氯农药和多氯联苯[J]. 安徽农业科学, 2010, 38(22): 12195-12197, 12245.
|
[20] |
赵丽, 农蕊瑜, 师真, 等. 分散固相萃取-气相色谱-质谱联用测定茶叶中的28种农药残留[J]. 江苏农业科学, 2020, 48(12): 208-215.
|
[21] |
马世柱, 陈楠, 黎小鹏, 等. 高效液相色谱法测定鸡蛋中磺胺类药物残留[J]. 现代农业科技, 2018(11): 235-236, 239.
|
[22] |
姜欣. 4种常用有机磷农药反相高效液相色谱分析[J]. 农药, 2009, 48(4): 272-273.
|
[23] |
LAZARTIGUES A, WIEST L, BAUDOT R, et al. Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2011, 400(7): 2185-2193.
|
[24] |
ISSA M M, M TAHA S, EL-MARSAFY A M, et al. Acetonitrile-Ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145: 122106.
|
[25] |
何倩. QuEChERS-高效液相色谱-串联质谱法测定黄瓜中64种农药残留[J]. 安徽农业科学, 2021, 49(22): 200-204.
|
[26] |
王静, 刘铮铮, 钟光剑. 超高效液相色谱-串联质谱法分析土壤及沉积物中氨基甲酸酯农药[J]. 中国环境监测, 2013, 29(4): 103-106.
|
[27] |
贺泽英, 张艳伟, 王雯雯, 等. QuEChERS-气相色谱三重四极杆串联质谱法测定土壤中227种农药残留[J]. 环境化学, 2020, 39(7): 2022-2025.
|