[1] |
陈静. 传统植物性发酵食品致突变性研究[D]. 重庆: 西南大学, 2008.
|
[2] |
郑菲, 舒沿沿. 植物发酵食品的营养功效与有害微生物控制措施[J]. 食品安全导刊, 2020(21): 61-62.
|
[3] |
EUROPEAN FOOD SAFETY AUTHORITY EFSA, MEDINA-PASTOR P, TRIACCHINI G. The 2018 European Union report on pesticide residues in food[J]. EFSA Journal, 2020, 18(4):e06057.
|
[4] |
柳采秀, 陈丽萍, 吴长兴, 等. 葡萄质量安全隐患与生产对策[J]. 浙江农业科学, 2019, 60(11): 2089-2093.
|
[5] |
张嘉. 大豆加工过程中典型除草剂残留行为研究[D]. 北京: 中国农业科学院, 2020.
|
[6] |
易守福, 李莎, 李灿, 等. 湖南省茶叶中农药残留与重金属污染现状分析[J]. 食品安全导刊, 2021(18): 97-100.
|
[7] |
ISLAM S M A, MATH R K, CHO K M, et al. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5380-5386.
|
[8] |
李文明, 韩永涛, 董丰收, 等. 毒死蜱及其代谢物3, 5, 6-三氯-2-吡啶酚在黄瓜腌制过程中的残留水平变化[J]. 农药学学报, 2013, 15(2): 223-227.
|
[9] |
HE Q, HUANG J W, YANG X W, et al. Effect of pesticide residues in grapes on alcoholic fermentation and elimination of chlorothalonil inhibition by chlorothalonil hydrolytic dehalogenase[J]. Food Control, 2016, 64: 70-76.
|
[10] |
于坚, 孙嘉笛, 孙秀兰, 等. 发酵类食品中微生物鉴定方法及功能研究进展[J]. 食品工业科技, 2022, 43(14): 409-416.
|
[11] |
JAY J M, JAMES M, LOESSNER M J, 等. 现代食品微生物学[M]. 北京: 中国农业大学出版社, 2008.
|
[12] |
赵虎威, 陈燕飞, 燕平梅. 泡菜发酵中微生物的研究[J]. 中国调味品, 2022, 47(1): 211-216.
|
[13] |
张杰, 赵志峰, 王佐军, 等. 四川泡菜菌相构成、风味与质量安全性研究进展[J]. 中国调味品, 2021, 46(10): 178-182, 197.
|
[14] |
迟涛, 方景泉, 郑愉润, 等. 低温发酵条件下乳酸菌对发酵酸菜体系中有机磷农药降解作用[J]. 中国乳品工业, 2015, 43(9): 15-18.
|
[15] |
MADEN B, YILDIRIM KUMRAL A. Degradation trends of some insecticides and microbial changes during sauerkraut fermentation under laboratory conditions[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14988-14995.
|
[16] |
申文熹, 张其圣, 陈功. 泡菜发酵过程中农药残留的变化规律研究[J]. 食品与发酵科技, 2015, 51(2): 29-34.
|
[17] |
赵越. 手性农药多效唑在食品发酵过程中立体选择性行为及对微生物群落影响的研究[D]. 武汉: 华中农业大学, 2019.
|
[18] |
HAN Y T, LIU S W, YANG J, et al. Residue behavior and processing factors of eight pesticides during the production of sorghum distilled spirits[J]. Food Control, 2016, 69: 250-255.
|
[19] |
HAN Y T, YANG J, SONG L, et al. Residue change of six pesticides in Chinese liquor produced from sorghum[J]. International Journal of Food Properties, 2017, 20(sup1): S755-S765.
|
[20] |
单治国, 张春花, 满红平, 等. 普洱茶固态发酵过程中联苯菊酯降解规律研究[J]. 植物保护, 2017, 43(4): 90-96.
|
[21] |
LU Y L, DIAO J L, GU X, et al. Stereoselective degradation of Diclofop-methyl during alcohol fermentation process[J]. Chirality, 2011, 23(5): 424-428.
|
[22] |
AN J J, GU X L, ZHAO X, et al. Fate of acephate and its toxic metabolite methamidophos during grape processing[J]. Food Control, 2018, 86: 163-169.
|
[23] |
WANG T S, ZHENG X Y, WANG X Y, et al. Different biosorption mechanisms of Uranium(Ⅵ) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions[J]. Journal of Environmental Radioactivity, 2017, 167: 92-99.
|
[24] |
ZHANG M M, WEN Y L, LUO X L, et al. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells[J]. Journal of Hazardous Materials, 2021, 407: 124350.
|
[25] |
ZHOU X W, LIU H F, ZHAO X H. The potencies of three microorganisms to dissipate four organophosphorus pesticides in three food materials during traditional fermentation[J]. Journal of Food Science and Technology, 2015, 52(11): 7353-7360.
|
[26] |
LU Y L, ZHANG D, LIAO Y H, et al. Stereoselective behavior of the chiral herbicides diclofop-methyl and diclofop during the soy sauce brewing process[J]. Chirality, 2016, 28(1): 78-84.
|
[27] |
许维娜, 刘希萌, 孔祥君, 等. 田间施药对自然发酵葡萄酒酵母菌群落结构的影响[J]. 微生物学通报, 2019, 46(4): 721-728.
|
[28] |
郭璐瑶. 5种农药在葡萄酒发酵过程中与酵母微生物互作效应及其残留变化规律[D]. 北京: 中国农业科学院, 2021.
|
[29] |
ÐOR ÐEVIĆ T M, ÐUROVIĆ-PEJ ČEV R D. Dissipation of chlorpyrifos-methyl by Saccharomyces cerevisiae during wheat fermentation[J]. LWT-Food Science and Technology, 2015, 61(2): 516-523.
|
[30] |
李记明, 司合芸, 于英, 等. 葡萄农药残留及其对葡萄酒酿造的影响[J]. 中国农业科学, 2012, 45(4): 743-751.
|
[31] |
GUO H M, ZHAO Y, YANG M N O, et al. Enantiomeric effect of paclobutrazol on the microorganism composition during wine fermentation[J]. Chirality, 2020, 32(4): 489-499.
|
[32] |
CABRAS P, ANGIONI A, GARAU V L, et al. Persistence and metabolism of folpet in grapes and wine[J]. Journal of Agricultural and Food Chemistry, 1997, 45(2): 476-479.
|
[33] |
CABRAS P, ANGIONI A, GARAU V L, et al. Pesticides in the distilled spirits of wine and its byproducts[J]. Journal of Agricultural and Food Chemistry, 1997, 45(6): 2248-2251.
|
[34] |
CABRAS P, ANGIONI A, GARAU V L, et al. Fate of some new fungicides (cyprodinil, fludioxonil, pyrimethanil, and tebuconazole) from vine to wine[J]. Journal of Agricultural and Food Chemistry, 1997, 45(7):2708-2710.
|
[35] |
赵玉娟. 葡萄酒香气物质及其影响因素研究[J]. 酿酒科技, 2015(4): 58-60, 64.
|
[36] |
FERNÁNDEZ M J, OLIVA J, BARBA A, et al. Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(15): 6156-6161.
|
[37] |
BRIZ-CID N, CASTRO-SOBRINO L, RIAL-OTERO R, et al. Fungicide residues affect the sensory properties and flavonoid composition of red wine[J]. Journal of Food Composition and Analysis, 2018, 66: 185-192.
|
[38] |
李毅丽, 李红玉, 贺艳楠, 等. 混菌发酵对昌黎赤霞珠葡萄酒品质的影响[J]. 食品与发酵工业, 2022, 48(21): 54-60.
|
[39] |
GONZÁLEZ-RODRÍGUEZ R M, NOGUEROL-PATO R, GONZÁLEZ-BARREIRO C, et al. Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines[J]. Food Research International, 2011, 44(1): 397-403.
|
[40] |
NOGUEROL-PATO R, GONZÁLEZ-RODRÍGUEZ R M, GONZÁLEZ-BARREIRO C, et al. Influence of tebuconazole residues on the aroma composition of Mencía red wines[J]. Food Chemistry, 2011, 124(4): 1525-1532.
|
[41] |
VALLEJO B, PICAZO C, OROZCO H, et al. Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation[J]. Scientific Reports, 2017, 7(1): 12414.
|
[42] |
NOGUEROL-PATO R, TORRADO-AGRASAR A, GONZÁLEZ-BARREIRO C, et al. Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis[J]. Food Chemistry, 2014, 146: 234-241.
|
[43] |
GARCÍA M A, OLIVA J, BARBA A, et al. Effect of fungicide residues on the aromatic composition of white wine inoculated with three Saccharomyces cerevisiae strains[J]. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1241-1247.
|
[44] |
回学宽, 王艳丽, 祝贺, 等. 葡萄酒中酚类物质的研究进展[J]. 中国果菜, 2019, 39(11): 65-71, 79.
|
[45] |
MULERO J, MARTÍNEZ G, OLIVA J, et al. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides[J]. Food Chemistry, 2015, 180: 25-31.
|
[46] |
NAVARRO S, VELA N, PÉREZ G, et al. Effect of sterol biosynthesis-inhibiting (SBI) fungicides on the fermentation rate and quality of young ale beer[J]. Food Chemistry, 2011, 126(2): 623-629.
|
[47] |
杨美景, 陈向民, 李艳. 酵母对葡萄酒香气影响的研究进展[J]. 中外葡萄与葡萄酒, 2009(9): 73-76.
|
[48] |
ALEM H, RIGOU P, SCHNEIDER R, et al. Impact of agronomic practices on grape aroma composition: a review[J]. Journal of the Science of Food and Agriculture, 2019, 99(3): 975-985.
|
[49] |
邢世均, 石玲, 刘广娟, 等. 三种杀菌剂对葡萄酒品质的影响及其消减规律[J]. 食品与发酵工业, 2019, 45(18): 189-194.
|
[50] |
WELKNER K, SZWEJDA J. Effect of pesticide mixture on value of fresh, fermented and pickles cucumbers[J]. Acta Agrobotanica, 2013, 54(1): 191-207.
|
[51] |
MANTHEY F A, CHAKRABORTY M, PEEL M D, et al. Effect of preharvest applied herbicides on breadmaking quality of hard red spring wheat[J]. Journal of the Science of Food and Agriculture, 2004, 84(5): 441-446.
|
[52] |
DARWENT A L, KIRKLAND K J, TOWNLEY-SMITH L, et al. Effect of preharvest applications of glyphosate on the drying, yield and quality of wheat[J]. Canadian Journal of Plant Science, 1994, 74(2): 221-230.
|
[53] |
RANDAZZO C L, FAVA G, TOMASELLI F, et al. Effect of Kaolin and copper based products and of starter cultures on green table olive fermentation[J]. Food Microbiology, 2011, 28(5): 910-919.
|