[1] |
WISNIEWSKI-DYÉ F, LUIS L, ERIKA A C, et al. Genome sequence of azospirillum brasilense cbg497 and comparative analyses of azospirillum core and accessory genomes provide insight into niche adaptation[J]. Genes, 2012, 3(4).DOI:10.3390/genes3040576.
|
[2] |
朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1): 102-105.
|
[3] |
BENIZRI E, BAUDOIN E, GUCKERT A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Science and Technology, 2001, 11(5): 557-574.
|
[4] |
RAI N, KUMAR V, SHARMA M, et al. Auxin transport mechanism of membrane transporter encoded by AEC gene of Bacillus licheniformis isolated from metagenome of Tapta Kund Hotspring of Uttrakhand, India[J]. International Journal of Biological Macromolecules, 2021, 185: 277-286.
|
[5] |
NICASTRO R, RAUCCI S, MICHEL A H, et al. Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast[J]. PLOS Genetics, 2021, 17(3): e1009414.
|
[6] |
SHAO J H, LI S Q, ZHANG N, et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9[J]. Microbial Cell Factories, 2015, 14: 130.
|
[7] |
LI M S, GUO R, YU F, et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21[J]. International Journal of Molecular Sciences, 2018, 19(2): 443.
|
[8] |
SPAEPEN S, VERSÉES W, GOCKE D, et al. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense[J]. Journal of Bacteriology, 2007, 189(21): 7626-7633.
|
[9] |
PATTEN C L, GLICK B R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 2002, 68(8): 3795-3801.
|
[10] |
SCHÜTZ A, GOLBIK R, TITTMANN K, et al. Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway[J]. European Journal of Biochemistry, 2003, 270(10): 2322-2331.
|
[11] |
SUN H M, ZHANG J K, LIU W T, et al. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 81.
|
[12] |
SEKINE M, WATANABE K, SYONO K. Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum[J]. Journal of Bacteriology, 1989, 171(3): 1718-1724.
|
[13] |
HOWDEN A J M, RICO A, MENTLAK T, et al. Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid[J]. Molecular Plant Pathology, 2009, 10(6): 857-865.
|
[14] |
PERLEY J E, STOWE B B. On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine[J]. Plant Physiology, 1966, 41(2): 234-237.
|
[15] |
OBERHANSLI T, DEFAGO G, HAAS D. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase[J]. Journal of General Microbiology, 1991, 137(10): 2273-2279.
|
[16] |
MURPHY A S. Seven things we think we know about auxin transport[J]. Molecular Plant, 2011, 4(3): 487-504.
|
[17] |
WABNIK K, GOVAERTS W, FRIML J, et al. Feedback models for polarized auxin transport: an emerging trend[J]. Molecular BioSystems, 2011, 7(8): 2352-2359.
|
[18] |
DOMENECH J, REDDY M S, KLOEPPER J W, et al. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato[J]. BioControl, 2006, 51(2): 245-258.
|
[19] |
TIMMUSK S, WAGNER E G. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses[J]. Molecular Plant-Microbe Interactions, 1999, 12(11): 951-959.
|
[20] |
ČOVANOVÁ M, SAUER M, RYCHTÁŘ J, et al. Overexpression of the auxin binding protein1 modulates PIN-dependent auxin transport in tobacco cells[J]. PLoS One, 2013, 8(7): e70050.
|
[21] |
MANSOUR N M, SAWHNEY M, TAMANG D G, et al. The bile/arsenite/riboflavin transporter (BART) superfamily[J]. The FEBS Journal, 2007, 274(3): 612-629.
|
[22] |
DA MOTA F F, GOMES E A, SELDIN L. Auxin production and detection of the gene coding for the Auxin Efflux Carrier (AEC) protein in Paenibacillus polymyxa[J]. The Journal of Microbiology, 2008, 46(3): 257-264.
|
[23] |
CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nature Biotechnology, 2007, 25: 1007-1014.
|
[24] |
LI S S, WANG J Y, LI X, et al. Genome-wide identification and evaluation of constitutive promoters in streptomycetes[J]. Microbial Cell Factories, 2015, 14(1): 172.
|
[25] |
HEINZE S, ZIMMERMANN K, LUDWIG C, et al. Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa[J]. Applied Microbiology and Biotechnology, 2018, 102(23): 10147-10159.
|
[26] |
AHEMAD M, KIBRET M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective[J]. Journal of King Saud University-Science, 2014, 26(1): 1-20.
|
[27] |
康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展[J]. 应用生态学报, 2010, 21(1): 232-238.
|
[28] |
DUCA D, LORV J, PATTEN C L, et al. Indole-3-acetic acid in plant-microbe interactions[J]. Antonie Van Leeuwenhoek, 2014, 106(1): 85-125.
|
[29] |
TAGHAVI S, GARAFOLA C, MONCHY S, et al. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees[J]. Applied and Environmental Microbiology, 2009, 75(3): 748-757.
|
[30] |
KARLIDAG H, ESITKEN A, TURAN M, et al. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple[J]. Scientia Horticulturae, 2007, 114(1): 16-20.
|
[31] |
孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
|
[32] |
胡晓健, 杨春霞, 谭世才, 等. 干旱胁迫对不同种源马尾松幼苗中脯氨酸及内源激素含量的影响[J]. 南方林业科学, 2020, 48(6): 24-28,53.
|
[33] |
MARULANDA A, BAREA J M, AZCÓN R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness[J]. Journal of Plant Growth Regulation, 2009, 28(2): 115-124.
|
[34] |
田野, 张会慧, 孟祥英, 等. 镉(Cd)污染土壤接种丛枝菌根真菌(Glomus mosseae)对黑麦草生长和光合的影响[J]. 草地学报, 2013, 21(1): 135-141.
|
[35] |
DEGANI O, DRORI R, GOLDBLAT Y. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize[J]. Physiology and Molecular Biology of Plants, 2015, 21(1): 137-149.
|
[36] |
KULKARNI G B, SANJEEVKUMAR S, KIRANKUMAR B, et al. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea[J]. Applied Biochemistry and Biotechnology, 2013, 169(4): 1292-1305.
|
[37] |
KAMISAKA S, YANAGISHIMA N, MASUDA Y. Effect of auxin and gibberellin on sporulation in yeast[J]. Physiologia Plantarum, 1967, 20(1): 90-97.
|
[38] |
SHARAF E F, FARRAG A A. Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici[J]. Polish journal of microbiology, 2004, 53(2): 111-116.
|
[39] |
GROOVER W, HELD D, LAWRENCE K, et al. Plant growth-promoting rhizobacteria: a novel management strategy for Meloidogyne incognita on turfgrass[J]. Pest Management Science, 2020, 76(9): 3127-3138.
|
[40] |
ELLING A A. Major emerging problems with minor meloidogyne species[J]. Phytopathology, 2013, 103(11): 1092-1102.
|
[41] |
ZHANG R J, OUYANG J, XU X Y, et al. Nematicidal activity of Burkholderia arboris J211 against Meloidogyne incognita on tobacco[J]. Frontiers in Microbiology, 2022, 13: 915546.
|
[42] |
LEE J H, KIM Y G, KIM M, et al. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria[J]. Environmental Microbiology, 2017, 19(5): 1776-1790.
|
[43] |
SANTOS V B, ARAÚJO A S F, LEITE L F C, et al. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems[J]. Geoderma, 2012, 170: 227-231.
|
[44] |
SINHA R K. Embarking on the second green revolution for sustainable agriculture in India: a judicious mix of traditional wisdom and modern knowledge in ecological farming[J]. Journal of Agricultural and Environmental Ethics, 1997, 10(2): 183-197.
|