[1] |
PEI H T, SU W Y, GUI M, et al. Comparative analysis of chemical constituents in different parts of Lotus by UPLC and QToF-MS[J]. Molecules, 2021, 26(7): 1855.
|
[2] |
LIMWACHIRANON J, HUANG H, SHI Z H, et al. Lotus flavonoids and phenolic acids: health promotion and safe consumption dosages[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(2): 458-471.
|
[3] |
WANG Y F, SHEN Z C, LI J, et al. Phytochemicals, biological activity, and industrial application of Lotus seedpod (Receptaculum Nelumbinis): a review[J]. Frontiers in Nutrition, 2022, 9: 1022794.
|
[4] |
CHEN S X, LI X P, WU J X, et al. Plumula Nelumbinis: a review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety[J]. Journal of Ethnopharmacology, 2021, 266: 113429.
|
[5] |
国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 285.
|
[6] |
QIN Y, SUN Y, LI J Q, et al. Characterization and antioxidant activities of procyanidins from Lotus seedpod, mangosteen pericarp, and Camellia flower[J]. International Journal of Food Properties, 2017, 20(7): 1621-1632.
|
[7] |
LING Z Q, XIE B J, YANG E L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera gaertn[J]. Journal of Agricultural and Food Chemistry, 2005, 53(7): 2441-2445.
|
[8] |
LEE M S, CHYAU C C, WANG C P, et al. Flavonoids identification and pancreatic beta-cell protective effect of Lotus seedpod[J]. Antioxidants, 2020, 9(8): 658.
|
[9] |
YU Y T, WEI X L, LIU Y, et al. Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in Lotus seeds: a potentially rich source of bioactive compounds[J]. Food Chemistry, 2022, 379: 132124.
|
[10] |
MA Z L, HUANG Y, HUANG W, et al. Separation, identification, and antioxidant activity of polyphenols from Lotus seed epicarp[J]. Molecules, 2019, 24(21): 4007.
|
[11] |
YAN Z, LUO X P, CONG J L, et al. Subcritical water extraction, identification and antiproliferation ability on HepG2 of polyphenols from Lotus seed epicarp[J]. Industrial Crops and Products, 2019, 129: 472-479.
|
[12] |
XU H, GAO H, LIU F Y, et al. Red-skin extracts of Lotus seeds alleviate high-fat-diet induced obesity via regulating lipoprotein lipase activity[J]. Foods, 2022, 11(14): 2085.
|
[13] |
LI T, LI Q L, WU W G, et al. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2-ARE pathway[J]. Acta Biochimica et Biophysica Sinica, 2019, 51(1): 31-40.
|
[14] |
吴磊, 吴静, 胡居吾, 等. 白莲莲子皮多糖的理化性质及免疫调节活性[J]. 现代食品科技, 2021, 37(5): 100-108, 129.
|
[15] |
高航, 高延芬, 徐虹. 莲子红衣多糖的分离纯化及结构表征[J]. 食品科学, 2016, 37(15): 94-99.
|
[16] |
李春帅, 徐文娟, 叶先文, 等. 基于分子网络图结合液质联用技术的莲子皮中生物碱类成分分析及含量测定[J]. 中国现代中药, 2023, 25(2): 296-303.
|
[17] |
ZHU M Z, LIU T, ZHANG C Y, et al. Flavonoids of Lotus (Nelumbo nucifera) seed embryos and their antioxidant potential[J]. Journal of Food Science, 2017, 82(8): 1834-1841.
|
[18] |
方嘉沁, 郑青松, 文雨欣, 等. 不同提取方法的莲子心多糖结构与理化性质比较[J]. 现代食品科技, 2023, 39(1): 92-103.
|
[19] |
WANG M, HU W J, WANG Q H, et al. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. ( Lotus ): a review[J]. International Journal of Biological Macromolecules, 2023, 226: 562-579.
|
[20] |
SHEN L L, CHU X K, ZHANG Z Q, et al. Structural characterization and in vitro anti-inflammatory estimation of an unusual pectin linked by rhamnogalacturonan I and xylogalacturonan from Lotus plumule[J]. International Journal of Biological Macromolecules, 2022, 194: 100-109.
|
[21] |
CHEN S, BI Y L, SUN S D, et al. The content and composition of total, free, and esterified sterols of Lotus plumule oil by GC-MS/FID[J]. Journal of the American Oil Chemists' Society, 2017, 94(3): 363-373.
|
[22] |
GONG Y S, GUO J, HU K, et al. Ameliorative effect of Lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by d-galactose[J]. Experimental Gerontology, 2016, 74: 21-28.
|
[23] |
CAO J L, YU X L, DENG Z Y, et al. Chemical compositions, antiobesity, and antioxidant effects of proanthocyanidins from Lotus seed epicarp and Lotus seed pod[J]. Journal of Agricultural and Food Chemistry, 2018, 66(51): 13492-13502.
|
[24] |
WU Q, ZHAO K Q, CHEN Y Y, et al. Effect of Lotus seedpod oligomeric procyanidins on AGEs formation in simulated gastrointestinal tract and cytotoxicity in Caco-2 cells[J]. Food & Function, 2021, 12(8): 3527-3538.
|
[25] |
TANG C E, XIE B J, SUN Z D. Antibacterial activity and mechanism of B-type oligomeric procyanidins from Lotus seedpod on enterotoxigenic Escherichia coli[J]. Journal of Functional Foods, 2017, 38: 454-463.
|
[26] |
LU C P, LIN K H, CHIA-CHI W U, et al. Antioxidant and cytoprotective properties of seeds and seed by-products from Lotus (Nelumbo nucifera)[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50(2): 12711.
|
[27] |
DASARI S, BAKTHAVACHALAM V, CHINNAPAKA S, et al. Neferine, an alkaloid from Lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism[J]. Phytotherapy Research, 2020, 34(9): 2366-2384.
|
[28] |
LE B, ANH P T N, YANG S H. Polysaccharide derived from Nelumbo nucifera Lotus plumule shows potential prebiotic activity and ameliorates insulin resistance in HepG2 cells[J]. Polymers, 2021, 13(11): 1780.
|
[29] |
张露, 黄祥霞, 涂宗财, 等. 5 种莲副产物中活性成分及其抗氧化、α-葡萄糖苷酶抑制活性比较[J]. 食品科学, 2018, 39(9): 33-38.
|
[30] |
YAN Z, ZHANG H H, DZAH C S, et al. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from Lotus seedpod[J]. Separation and Purification Technology, 2020, 236: 116217.
|
[31] |
HUANG H, BELWAL T, JIANG L, et al. Valorization of Lotus byproduct (Receptaculum Nelumbinis) under green extraction condition[J]. Food and Bioproducts Processing, 2019, 115: 110-117.
|
[32] |
ZHANG L J, CHENG Z, ZHAO Q, et al. Green and efficient PEG-based ultrasound-assisted extraction of polysaccharides from superfine ground Lotus plumule to investigate their antioxidant activities[J]. Industrial Crops and Products, 2017, 109: 320-326.
|
[33] |
杨晓冉, 李凌凌, 王逸, 等. 莲蓬壳活性炭的制备及应用[J]. 农业与技术, 2021, 41(16): 5-7.
|
[34] |
LIU N, LIU Y G, ZENG G M, et al. Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated Lotus seedpod biochar[J]. Journal of Environmental Sciences, 2020, 87: 10-23.
|
[35] |
LIU B, ZHOU X H, CHEN H B, et al. Promising porous carbons derived from Lotus seedpods with outstanding supercapacitance performance[J]. Electrochimica Acta, 2016, 208: 55-63.
|
[36] |
ZHENG B, WANG J X, PAN Z R, et al. An efficient metal-free catalyst derived from waste Lotus seedpod for oxygen reduction reaction[J]. Journal of Porous Materials, 2020, 27(3): 637-646.
|
[37] |
鞠云, 唐春红, 周意文, 等. 莲子心中莲心碱的提取及莲心饮料工艺研究[J]. 中国酿造, 2015, 34(9): 92-96.
|
[38] |
陈曦, 李晓宇, 李会, 等. 莲子红衣戚风蛋糕的制作及营养成分分析[J]. 食品研究与开发, 2021, 42(21): 41-46.
|
[39] |
FENG N J, SHEN Y, HU C Q, et al. Inhibition of advanced glycation end products in yogurt by Lotus seedpod oligomeric procyanidin[J]. Frontiers in Nutrition, 2021, 8: 781998.
|
[40] |
胡罗松, 翟永贞, 文雨欣, 等. 莲废弃物中活性物质在广式月饼中的应用[J]. 现代食品, 2023, 29(9): 74-79.
|
[41] |
王悦, 陈曦, 姚倩, 等. 响应面法优化莲子红衣肉丸加工工艺[J]. 食品工业科技, 2019, 40(19): 170-174.
|
[42] |
LEE S, SHIN H S. Effect of Lotus seed and seedpod extracts on oxidative stability against lard during storage[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(1): 53-60.
|
[43] |
朱莉娜, 曹伟娜. 莲蓬壳色素的提取及其对真丝绸染色性能研究[J]. 印染助剂, 2018, 35(1): 31-36.
|
[44] |
方进, 张雨彤, 高雯雯, 等. 蚕丝织物的废弃莲蓬壳染色[J]. 印染, 2022, 48(9): 27-30.
|
[45] |
陈绪涛, 熊泽亚, 樊秀兰, 等. 不同基质栽培大球盖菇比较试验[J]. 食用菌, 2022, 44(2): 26-27, 30.
|
[46] |
莫铭恩, 张慧, 吴惠瑾, 等. 莲子壳对Cr(Ⅲ)的吸附性能研究[J]. 安全与环境工程, 2014, 21(6): 98-103.
|