浙江农业科学 ›› 2023, Vol. 64 ›› Issue (4): 898-904.DOI: 10.16178/j.issn.0528-9017.20220627
张学峰1(), 赵云霞1, 唐艺婷1, 陈坤2, 郑凯2, 曹凯歌1, 陈澄宇1,*(
)
收稿日期:
2022-12-06
出版日期:
2023-04-11
发布日期:
2023-03-29
通讯作者:
陈澄宇
作者简介:
陈澄宇(1989—),男,山东潍坊人,助理研究员,博士,从事作物害虫绿色防控技术及抗性机制研究,E-mail:chenchengyu@126.com。基金资助:
Received:
2022-12-06
Online:
2023-04-11
Published:
2023-03-29
摘要:
在植物保护领域,由于长期依赖化学防治手段,已引起环境污染、农药残留超标和病虫草抗药性增强等问题。壳聚糖作为一种兼具多重生物活性和载体功能的天然高分子材料,可作为化学农药的替代品和增效剂。壳聚糖自身具有多重生物活性,一是广泛的抗菌活性,可有效抑制多种植物病原菌的生长繁殖;二是诱导作物产生防御反应,调节植物生长,提高作物抗逆能力;三是成膜性,在作物表面形成高分子薄膜,提供物理屏障。壳聚糖还具备优良的载体功能,负载农药,赋予其缓释控释功能,有效延长持效期;负载矿质元素,持续供给植物营养,还可增强其生物活性。随着研究不断深入,壳聚糖必将在植物保护领域发挥重要作用。
中图分类号:
张学峰, 赵云霞, 唐艺婷, 陈坤, 郑凯, 曹凯歌, 陈澄宇. 壳聚糖在植物保护领域中的研究与应用进展[J]. 浙江农业科学, 2023, 64(4): 898-904.
[1] | PESHIN R, DHAWAN A K. Integrated pest management: innovation-development Process[M]. Dordrecht: Springer Netherlands, 2009. |
[2] | FERNÁNDEZ L. Leading countries in agricultural consumption of pesticides worldwide in 2019[DB/OL]. (2021-09-27)[2022-03-15]. https://www.statista.com/statistics/1263069/global-pesticide-use-by-country/. |
[3] | WAN N F, JI X Y, JIANG J X, et al. An eco-engineering assessment index for chemical pesticide pollution management strategies to complex agro-ecosystems[J]. Ecological Engineering, 2013, 52: 203-210. |
[4] | 范春丽, 刘晓娟, 曲金柱. 壳聚糖涂膜处理对山楂贮藏保鲜效果的影响[J]. 贵州农业科学, 2021, 49(6): 108-112. |
[5] | 何久兴, 赵解春, 白文波, 等. 叶面喷施寡糖对生菜生长和品质的调节作用[J]. 中国农业气象, 2019, 40(12): 783-792. |
[6] | 曹琪, 孟姝婷, 桑金盛, 等. 壳聚糖对苹果幼树根区土壤养分活化及其养分吸收的影响[J]. 山东农业科学, 2021, 53(4): 78-83. |
[7] | 杨桂兰, 陈迎春, 昝林生, 等. 壳聚糖对葡萄病害和果实品质影响的研究进展[J]. 中外葡萄与葡萄酒, 2021(6): 77-83. |
[8] | ROMANAZZI G, FELIZIANI E, SIVAKUMAR D. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-forming properties[J]. Frontiers in Microbiology, 2018, 9: 2745. |
[9] | 孟玲, 王雷. 壳聚糖对多种植物病原菌的抑菌效果概述[J]. 农药, 2009, 48(11): 781-783. |
[10] | XUE H L, BI Y, ZONG Y Y, et al. Effects of elicitors on trichothecene accumulation and Tri genes expression in potato tubers inoculated with Fusarium sulphureum[J]. European Journal of Plant Pathology, 2017, 148(3): 673-685. |
[11] | KHEIRI A, MOOSAWI JORF S A, MALIHIPOUR A, et al. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse[J]. International Journal of Biological Macromolecules, 2016, 93(Pt A): 1261-1272. |
[12] | MENG D, GARBA B, REN Y, et al. Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action[J]. International Journal of Biological Macromolecules, 2020, 158: 1063-1070. |
[13] | KONG M, CHEN X G, XING K, et al. Antimicrobial properties of chitosan and mode of action: a state of the art review[J]. International Journal of Food Microbiology, 2010, 144(1): 51-63. |
[14] | LEE D S, JE J Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism[J]. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6574-6579. |
[15] | LI B, SHI Y, SHAN C L, et al. Effect of chitosan solution on the inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon[J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1010-1015. |
[16] | MANSILLA A Y, ALBERTENGO L, RODRÍGUEZ M S, et al. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000[J]. Applied Microbiology and Biotechnology, 2013, 97(15): 6957-6966. |
[17] | DAVYDOVA V N, NAGORSKAIA V P, GORBACH V I, et al. Chitosan antiviral activity: dependence on structure and depolymerization method[J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2011, 47(1): 113-118. |
[18] | ESCUDERO N, LOPEZ-MOYA F, GHAHREMANI Z, et al. Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage[J]. Frontiers in Plant Science, 2017, 8: 1415. |
[19] | PALMA-GUERRERO J, LOPEZ-JIMENEZ J A, PÉREZ-BERNÁ A J, et al. Membrane fluidity determines sensitivity of filamentous fungi to chitosan[J]. Molecular Microbiology, 2010, 75(4): 1021-1032. |
[20] | PALMA-GUERRERO J, HUANG I C, JANSSON H B, et al. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner[J]. Fungal Genetics and Biology, 2009, 46(8): 585-594. |
[21] | GARCÍA-RINCÓN J, VEGA-PÉREZ J, GUERRA-SÁNCHEZ M G, et al. Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill[J]. Pesticide Biochemistry and Physiology, 2010, 97(3): 275-278. |
[22] | XU J G, ZHAO X M, WANG X L, et al. Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular targets[J]. Pesticide Biochemistry and Physiology, 2007, 88(2): 167-175. |
[23] | HELANDER I M, NURMIAHO-LASSILA E L, AHVENAINEN R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria[J]. International Journal of Food Microbiology, 2001, 71(2/3): 235-244. |
[24] | MUKHTAR AHMED K B, KHAN M M A, SIDDIQUI H, et al. Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review[J]. Carbohydrate Polymers, 2020, 227: 115331. |
[25] | ZHANG X Q, LI K C, XING R E, et al. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth[J]. Journal of Agricultural and Food Chemistry, 2018, 66(15): 3810-3822. |
[26] | VAN S N, DINH MINH H, NGUYEN ANH D. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house[J]. Biocatalysis and Agricultural Biotechnology, 2013, 2(4): 289-294. |
[27] | KHATI P, CHAUDHARY P, GANGOLA S, et al. Nanochitosan supports growth of Zea mays and also maintains soil health following growth[J]. 3 Biotech, 2017, 7(1): 81. |
[28] | LU L F, LIU Y, YANG J L, et al. Quaternary chitosan oligomers enhance resistance and biocontrol efficacy of Rhodosporidium paludigenum to green mold in Satsuma orange[J]. Carbohydrate Polymers, 2014, 113: 174-181. |
[29] | ZOU P, LI K C, LIU S, et al. Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress[J]. Carbohydrate Polymers, 2015, 126: 62-69. |
[30] | YIN H, FRETTÉ X C, CHRISTENSEN L P, et al. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum)[J]. Journal of Agricultural and Food Chemistry, 2012, 60(1): 136-143. |
[31] | AZIZ A, TROTEL-AZIZ P, DHUICQ L, et al. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew[J]. Phytopathology, 2006, 96(11): 1188-1194. |
[32] | LIN W L, HU X Y, ZHANG W Q, et al. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice[J]. Journal of Plant Physiology, 2005, 162(8): 937-944. |
[33] | 朱露露, 高丰衣, 李大虎. 壳聚糖涂膜技术在水果保鲜中的研究进展[J]. 农产品加工, 2022(6): 72-76. |
[34] | VARGAS M, PASTOR C, CHIRALT A, et al. Recent advances in edible coatings for fresh and minimally processed fruits[J]. Critical Reviews in Food Science and Nutrition, 2008, 48(6): 496-511. |
[35] | ALI A, MUHAMMAD M T M, SIJAM K, et al. Effect of chitosan coatings on the physicochemical characteristics of Eksotika Ⅱ Papaya (Carica papaya L.) fruit during cold storage[J]. Food Chemistry, 2011, 124(2): 620-626. |
[36] | BOURLIEU C, GUILLARD V, VALLÈS-PAMIÈS B, et al. Edible moisture barriers: how to assess of their potential and limits in food products shelf-life extension?[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(5): 474-499. |
[37] | DANG Q F, YAN J Q, LI Y, et al. Chitosan acetate as an active coating material and its effects on the storing of Prunus avium L[J]. Journal of Food Science, 2010, 75(2): S125-S131. |
[38] | LIU Y T, YUAN Y, DUAN S Q, et al. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging[J]. International Journal of Biological Macromolecules, 2020, 155: 249-259. |
[39] | 王敬狄, 李楠, 李中飞. 壳聚糖载药微球制备的研究进展[J]. 辽宁化工, 2021, 50(7): 1065-1067. |
[40] | MUJTABA M, KHAWAR K M, CAMARA M C, et al. Chitosan-based delivery systems for plants: a brief overview of recent advances and future directions[J]. International Journal of Biological Macromolecules, 2020, 154: 683-697. |
[41] | 王娟, 李国宾, 张保华, 等. 多杀霉素/壳聚糖控释微球的制备及其释药温敏性[J]. 农药, 2019, 58(4): 266-270. |
[42] | LIU Y, SUN Y, HE S, et al. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications[J]. International Journal of Biological Macromolecules, 2013, 57: 213-217. |
[43] | KUMAR CHAUDHARI A, SINGH A, KUMAR SINGH V, et al. Assessment of chitosan biopolymer encapsulated α-terpineol against fungal, aflatoxin B1 (AFB1) and free radicals mediated deterioration of stored maize and possible mode of action[J]. Food Chemistry, 2020, 311: 126010. |
[44] | LI G B, WANG J, KONG X P. Coprecipitation-based synchronous pesticide encapsulation with chitosan for controlled spinosad release[J]. Carbohydrate Polymers, 2020, 249: 116865. |
[45] | XIE Y L, JIANG W, LI F, et al. Controlled release of spirotetramat using starch-chitosan-alginate-encapsulation[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 149-155. |
[46] | CAMPOS E V R, PROENÇA P L F, OLIVEIRA J L, et al. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control[J]. Scientific Reports, 2018, 8: 7623. |
[47] | HE S, ZHANG W B, LI D G, et al. Preparation and characterization of double-shelled avermectin microcapsules based on copolymer matrix of silica-glutaraldehyde-chitosan[J]. Journal of Materials Chemistry B, 2013, 1(9): 1270-1278. |
[48] | LI M, HUANG Q L, WU Y. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers[J]. Pest Management Science, 2011, 67(7): 831-836. |
[49] | FU Y B, HE H W, LIU R, et al. Preparation and performance of a BTDA-modified polyurea microcapsule for encapsulating avermectin[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110400. |
[50] | XU C L, CAO L D, ZHAO P Y, et al. Synthesis and characterization of stimuli-responsive poly(2-dimethylamino-ethylmethacrylate)-grafted chitosan microcapsule for controlled pyraclostrobin release[J]. International Journal of Molecular Sciences, 2018, 19(3): 854. |
[51] | YE Z, GUO J J, WU D W, et al. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide[J]. Carbohydrate Polymers, 2015, 132: 520-528. |
[52] | CHOUDHARY R C, KUMARASWAMY R V, KUMARI S, et al. Zinc encapsulated chitosan nanoparticle to promote maize crop yield[J]. International Journal of Biological Macromolecules, 2019, 127: 126-135. |
[53] | MIZWARI Z M, OLADIPO A A, YILMAZ E. Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70(6): 383-391. |
[54] | SAHARAN V, SHARMA G, YADAV M, et al. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato[J]. International Journal of Biological Macromolecules, 2015, 75: 346-353. |
[55] | LIANG W L, YU A X, WANG G D, et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth[J]. Carbohydrate Polymers, 2018, 199: 437-444. |
[56] | MORENO-MARTÍN G, SANZ-LANDALUZE J, LEÓN-GONZÁLEZ M E, et al. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: effect on essential elements uptake[J]. Science of the Total Environment, 2020, 725: 138453. |
[57] | SAHARAN V, KUMARASWAMY R V, CHOUDHARY R C, et al. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food[J]. Journal of Agricultural and Food Chemistry, 2016, 64(31): 6148-6155. |
[1] | 厉晓腊, 方鸣, 陈官菊, 刘又高, 蔡瑞杭, 王根锷, 柴一秋. 几种杀菌剂对番茄青枯病菌的室内抑菌研究[J]. 浙江农业科学, 2023, 64(4): 905-908. |
[2] | 张佳, 蒋薇, 贾志航, 宋庆科, 张婷, 魏猛. 抑霉唑在草莓生长过程中对映体选择性降解行为[J]. 浙江农业科学, 2023, 64(4): 921-926. |
[3] | 周秀莹, 温馨, 贾晓菲, 谭淑铧, 林庆昶, 黎小鹏. 液相色谱-串联质谱法检测动物源性食品中314种农药残留[J]. 浙江农业科学, 2023, 64(4): 940-944. |
[4] | 雷玲, 郑蔚然, 徐明飞, 于国光, 王强. 国内外蓝莓农药最大残留限量比对分析[J]. 浙江农业科学, 2023, 64(2): 435-440. |
[5] | 温馨, 黎小鹏, 谭淑铧, 林庆昶, 贾晓菲, 罗紫萍. 2021年中山市种植蔬菜农药残留及膳食风险评估[J]. 浙江农业科学, 2023, 64(2): 455-462. |
[6] | 刘岩, 朱加虹, 胡桂仙, 赖爱萍, 王昊, 万玉杰. 国内外猕猴桃农药最大残留限量标准比对[J]. 浙江农业科学, 2023, 64(1): 15-19. |
[7] | 雷玲, 杨帆, 褚田芬, 于国光, 郑蔚然. 我国青梅农药残留限量标准[J]. 浙江农业科学, 2023, 64(1): 34-37. |
[8] | 郭清卉, 李昊. 土地权属异质性视角下的农户绿色农药施用行为[J]. 浙江农业科学, 2022, 63(9): 2068-2072. |
[9] | 许亚丽, 姜遥, 杨平, 张延, 向宇航, 柯培新, 戴芬, 曹康. 国内外芹菜农药残留限量标准对比分析[J]. 浙江农业科学, 2022, 63(9): 2103-2106. |
[10] | 褚辉. 上海市奉贤区黄杨绢野螟为害动态及3种纳米农药防治试验[J]. 浙江农业科学, 2022, 63(8): 1815-1817. |
[11] | 王娓娓, 李佳颖, 张兆扬, 杨晋燕, 李洪臣, 赵永伟, 关卫东, 杨军杰. 三门峡烟区烤烟感官质量与其他质量因素的关系分析[J]. 浙江农业科学, 2022, 63(7): 1600-1605. |
[12] | 林媚, 王天玉, 平新亮, 姚周麟. 浙江柑橘果品农药残留状况分析[J]. 浙江农业科学, 2022, 63(6): 1351-1355. |
[13] | 杨秋菊, 黎小鹏, 陈楠, 赵文华. 草莓中农药残留风险评估及分析[J]. 浙江农业科学, 2022, 63(5): 1057-1059. |
[14] | 郑剑峰, 董叶箐, 俞婕, 钟寒辉, 韦栋屹, 虞祖苗, 孙文闪. 分散固相萃取-气质联用法快速测定蜂蜜中112种农药残留[J]. 浙江农业科学, 2022, 63(4): 787-791. |
[15] | 赵慧宇, 王嵘, 胡佳卉, 张启, 毕婷, 唐志伟. 大棚杨梅农药监管与使用建议[J]. 浙江农业科学, 2022, 63(3): 549-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||