[1] |
何宁佳, 赵爱春, 秦俭, 等. 桑树基因组计划与桑树产业[J]. 蚕业科学, 2012, 38(1): 140-145.
|
[2] |
杨虎, 沈浩. 中国传统桑树资源利用变迁及其当代生态价值探微[J]. 蚕业科学, 2021, 47(4): 374-379.
|
[3] |
李坤峰, 骆卫东, 丁玲, 等. 果桑栽培技术与设施栽培应用展望[J]. 中国蚕业, 2016, 37(1): 11-15.
|
[4] |
刘军, 肖更生, 廖森泰, 等. 我国桑资源保健食品发展现状与展望[J]. 广东农业科学, 2013, 40(8): 97-100.
|
[5] |
BAI H X, JIANG W, YAN R N, et al. Comparing the effects of three processing methods on the efficacy of mulberry leaf tea: analysis of bioactive compounds, bioavailability and bioactivity[J]. Food Chemistry, 2023, 405(Pt B): 134900.
|
[6] |
YAGI M, KOUNO T, AOYAGI Y, et al. The structure of moranoline, a piperidine alkaloid from Morus species[J]. Nippon NÅ geikagaku Kaishi, 1976, 50(11): 571-572.
|
[7] |
NAKAGAWA K. Studies targeting α-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: background, evaluation, and challenges in the development of food ingredients for therapeutic purposes[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(5): 900-908.
|
[8] |
JAN N, FATIMA T, QADRI T, et al. Pharmacological effects & quality parameters of Morus species: a review[J]. International Journal of Pharmacy Science and Research, 2018, 3: 1-4.
|
[9] |
邱长玉, 陆晓媚, 张朝华, 等. 14个桑树品种枝叶中的1-脱氧野尻霉素含量测定与分析[J]. 蚕学通讯, 2022, 42(3): 1-6.
|
[10] |
KANG C W, PARK M, LEE H J. Mulberry (Morus alba L.) leaf extract and 1-deoxynojirimycin improve skeletal muscle insulin resistance via the activation of IRS-1/PI3K/akt pathway in db/db mice[J]. Life, 2022, 12(10): 1630.
|
[11] |
LI A N, CHEN J J, LI Q Q, et al. Alpha-glucosidase inhibitor 1-Deoxynojirimycin promotes beige remodeling of 3T3-L1 preadipocytes via activating AMPK[J]. Biochemical and Biophysical Research Communications, 2019, 509(4): 1001-1007.
|
[12] |
CHEN W K, LIANG T T, ZUO W W, et al. Neuroprotective effect of 1-Deoxynojirimycin on cognitive impairment, βamyloid deposition, and neuroinflammation in the SAMP8 mice[J]. Biomedicine & Pharmacotherapy, 2018, 106: 92-97.
|
[13] |
董强, 李阳, 国锦琳. 桑椹多糖研究进展[J]. 中药与临床, 2021, 12(4): 77-80.
|
[14] |
陈春. 桑葚多糖的结构鉴定、活性评价及其体外消化酵解[D]. 广州: 华南理工大学, 2018: 31-32, 43, 49.
|
[15] |
崔秋英, 邱长玉, 林强, 等. 几种桑树重要活性物质的研究现状[J]. 广西蚕业, 2018, 55(4): 34-41.
|
[16] |
牛天羽, 刘洪章, 刘树英. 4个桑树品种桑葚多糖提取条件的优化及其含量比较[J]. 湖南农业科学, 2014(17): 53-56.
|
[17] |
LIU Y M, LIU Y M, MU D L, et al. Preparation, structural characterization and bioactivities of polysaccharides from mulberry (Mori fructus)[J]. Food Bioscience, 2022, 46: 101604.
|
[18] |
WAN M X, LI Q, LEI Q Y, et al. Polyphenols and polysaccharides from Morus alba L. fruit attenuate high-fat diet-induced metabolic syndrome modifying the gut microbiota and metabolite profile[J]. Foods, 2022, 11(12): 1818.
|
[19] |
MA X F, YANG J, LI X, et al. A GC-MS-based metabolomic strategy to investigate the protective effects of mulberry polysaccharide on CCl4-induced acute liver injury in mice[J]. Waste and Biomass Valorization, 2022, 13(10): 4211-4222.
|
[20] |
LI S S, LI Y, SUN H J, et al. Mulberry fruit polysaccharides alleviate diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis in vivo: the roles of cell apoptosis and inflammation[J]. Bioengineered, 2021, 12(2): 11599-11611.
|
[21] |
刘鑫彤, 孙登阳, 叶世芸, 等. 桑枝多酚的制备与其抗氧化活性成分研究[J]. 中国现代中药, 2019, 21(6): 806-810.
|
[22] |
朱正华, 朱良均, 闵思佳. 桑树中多酚与黄酮类物质的测定[J]. 中国蚕业, 2001, 22(4): 19-20.
|
[23] |
黄金枝, 朱敏婕, 俞燕芳, 等. 桑椹成熟过程中酚类物质及总黄酮含量的动态变化[J]. 蚕桑茶叶通讯, 2017(5): 1-3.
|
[24] |
范金波, 蔡茜彤, 冯叙桥, 等. 桑葚、蓝莓、黑加仑中多酚类物质的抗氧化活性[J]. 食品与发酵工业, 2015, 41(2): 157-162.
|
[25] |
LI Z W, CHEN X M, LIU G, et al. Antioxidant activity and mechanism of resveratrol and polydatin isolated from mulberry (Morus alba L.)[J]. Molecules, 2021, 26(24): 7574.
|
[26] |
SHI X W, XU L, ZHANG J Q, et al. Oxyresveratrol from mulberry branch extract protects HUVECs against oxidized low-density lipoprotein-induced oxidative injury via activation of the Nrf-2/HO-1 pathway[J]. Journal of Functional Foods, 2023, 100: 105371.
|
[27] |
LEE J H, BAEK S Y, JANG E J, et al. Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase[J]. Chemico-Biological Interactions, 2018, 289: 68-74.
|
[28] |
YANG T Y, YU M H, WU Y L, et al. Mulberry leaf (Morus alba L.) extracts and its chlorogenic acid isomer component improve glucolipotoxicity-induced hepatic lipid accumulation via downregulating miR-34a and decreased inflammation[J]. Nutrients, 2022, 14(22): 4808.
|
[29] |
YANG T Y, WU Y L, YU M H, et al. Mulberry leaf and neochlorogenic acid alleviates glucolipotoxicity-induced oxidative stress and inhibits proliferation/migration via downregulating ras and FAK signaling pathway in vascular smooth muscle cell[J]. Nutrients, 2022, 14(15): 3006.
|
[30] |
李伟. 黄酮类化合物的分类及其在畜牧业中的应用[J]. 乡村科技, 2023, 14(6): 96-98.
|
[31] |
黄晓彤, 史锐, 刘苗苗, 等. 同属不同种桑叶总黄酮的含量测定及分析[J]. 亚太传统医药, 2022, 18(8): 91-95.
|
[32] |
刘利, 潘一乐. 春秋桑叶总黄酮含量分析及提取工艺优化[J]. 食品科学, 2009, 30(4): 72-75.
|
[33] |
张宪, 李岳. 不同产地桑叶中黄酮类成分含量分析[J]. 山东科学, 2021, 34(4): 34-39.
|
[34] |
LV Q Y, LIN J R, WU X Y, et al. Novel active compounds and the anti-diabetic mechanism of mulberry leaves[J]. Frontiers in Pharmacology, 2022, 13: 986931.
|
[35] |
SHI Y, ZHONG L, FAN Y D, et al. The protective effect of mulberry leaf flavonoids on high-carbohydrate-induced liver oxidative stress, inflammatory response and intestinal microbiota disturbance in Monopterus albus[J]. Antioxidants, 2022, 11(5): 976.
|
[36] |
LIN Z W, GAN T T, HUANG Y Z, et al. Anti-inflammatory activity of mulberry leaf flavonoids in vitro and in vivo[J]. International Journal of Molecular Sciences, 2022, 23(14): 7694.
|
[37] |
牛明, 王睿林, 王仲霞, 等. 基于临床经验和分子对接技术的抗新型冠状病毒中医组方快速筛选模式及应用[J]. 中国中药杂志, 2020, 45(6): 1213-1218.
|
[38] |
KIM Y S, KIM B, KWON E B, et al. MMulberrofuran G, a mulberry component, prevents SARS-CoV-2 infection by blocking the interaction between SARS-CoV-2 spike protein S1 receptor-binding domain and human angiotensin-converting enzyme 2 receptor[J]. Nutrients, 2022, 14(19): 4170.
|
[39] |
ZHANG L W, SU S L, ZHU Y, et al. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway[J]. Biomedicine & Pharmacotherapy, 2019, 112: 108675.
|
[40] |
HU X, ZHANG K, PAN G Z, et al. Cortex Mori extracts induce apoptosis and inhibit tumor invasion via blockage of the PI3K/AKT signaling in melanoma cells[J]. Frontiers in Pharmacology, 2022, 13: 1007279.
|
[41] |
LIU T N, LU Y Y, TONISSEN K, et al. Application of traditional Chinese medicine as skin depigmentation agents[J]. Heliyon, 2022, 8(12): e12571.
|
[42] |
MA G Q, CHAI X Y, HOU G G, et al. Phytochemistry, bioactivities and future prospects of mulberry leaves: a review[J]. Food Chemistry, 2022, 372: 131335.
|
[43] |
JIANG Y, NIE W J. Chemical properties in fruits of mulberry species from the Xinjiang Province of China[J]. Food Chemistry, 2015, 174: 460-466.
|
[44] |
LV M S, AIHAITI A, LIU X L, et al. Development of probiotic-fermented black mulberry (Morus nigra L.) juice and its antioxidant activity in C2C12 cells[J]. Fermentation, 2022, 8(12): 697.
|
[45] |
DU H X, WANG X P, YANG H G, et al. Regulation on the quality of yogurt by phenolic fraction of mulberry pomace supplemented before and after fermentation[J]. Food Control, 2023, 144: 109333.
|
[46] |
HUANG X, SUN L, LIU L, et al. Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein[J]. Food Chemistry, 2022, 372: 131241.
|
[47] |
ZHENG T T, TANG P P, LI G Y. Development of a pH-sensitive film based on collagen/chitosan/ZnO nanoparticles and mulberry extract for pork freshness monitoring[J]. Food Chemistry, 2023, 402: 134428.
|
[48] |
LI M W, HASSAN F U, TANG Z H, et al. Mulberry leaf flavonoids improve milk production, antioxidant, and metabolic status of water buffaloes[J]. Frontiers in Veterinary Science, 2020, 7: 599.
|
[49] |
JIANG W Q, LIN Y, QIAN L J, et al. Mulberry leaf meal: a potential feed supplement for juvenile Megalobrama amblycephala “Huahai No.1”[J]. Fish & Shellfish Immunology, 2022, 128: 279-287.
|
[50] |
HASSAN F U, ARSHAD M A, LI M W, et al. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects[J]. Animals, 2020, 10(11): 2076.
|
[51] |
SUN H, LUO Y, ZHAO F F, et al. The effect of replacing wildrye hay with mulberry leaves on the growth performance, blood metabolites, and carcass characteristics of sheep[J]. Animals, 2020, 10(11): 2018.
|
[52] |
SHEN M M, LI T, LU J, et al. Effect of dietary supplementation with mulberry and Moringa leaves on the chicken reproductive performance[J]. Czech Journal of Animal Science, 2022, 67(8): 339-347.
|
[53] |
ISLAM M R, NUREALAM SIDDIQUI M, KHATUN A, et al. Dietary effect of mulberry leaf (Morus alba) meal on growth performance and serum cholesterol level of broiler chickens[J]. SAARC Journal of Agriculture, 2015, 12(2): 79-89.
|
[54] |
丰源, 李涛, 陈子康, 等. 日粮中添加桑叶DNJ对49-56周龄蛋鸡生产性能、蛋品质和机体健康的影响[J]. 饲料工业, 2023, 44(5): 49-54.
|
[55] |
CHEN Z J, XIE Y Q, LUO J Y, et al. Dietary supplementation with Moringa oleifera and mulberry leaf affects pork quality from finishing pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2021, 105(1): 72-79.
|
[56] |
谢辉, 李少璁, 赵卫国, 等. 桑叶DNJ对家兔肠道消化功能的影响[J]. 安徽农业科学, 2022, 50(16): 58-61, 64.
|