浙江农业科学 ›› 2025, Vol. 66 ›› Issue (7): 1770-1778.DOI: 10.16178/j.issn.0528-9017.20240664
收稿日期:
2024-08-19
出版日期:
2025-07-11
发布日期:
2025-07-28
通讯作者:
罗文(1970—),男,江西吉安人,教授,博士,研究方向为水生生物学,E-mail:Luowen@usx.edu.cn。
作者简介:
张红燕(1999—),女,贵州铜仁人,硕士研究生,研究方向为生物化学与分子生物学,E-mail:3013846402@qq.com。
基金资助:
ZHANG Hongyan(), JIN Can, LUO Wen(
)
Received:
2024-08-19
Online:
2025-07-11
Published:
2025-07-28
摘要:
Kunitz型丝氨酸蛋白酶抑制剂广泛存在于自然界,其包含1个或多个Kunitz结构域,该结构域通常是由2段α螺旋,一对反向平行的β折叠,β转角和2个环以及2~3对保守的二硫键组成。这些含Kunitz结构域的蛋白通过与丝氨酸蛋白酶以一种类似底物的方式紧密结合,阻断了丝氨酸蛋白酶的活性位点,从而抑制了酶的活性。本文综述了这类抑制剂在抗肿瘤、抗凝血、抗炎、抗微生物等方面发挥的重要作用。
中图分类号:
张红燕, 金参, 罗文. Kunitz型丝氨酸蛋白酶抑制剂的研究进展[J]. 浙江农业科学, 2025, 66(7): 1770-1778.
ZHANG Hongyan, JIN Can, LUO Wen. Research progress of Kunitz-type serine protease inhibitors[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(7): 1770-1778.
[1] | LEUNG D, ABBENANTE G, FAIRLIE D P. Protease inhibitors: current status and future prospects[J]. Journal of Medicinal Chemistry, 2000, 43(3): 305-341. |
[2] | RANASINGHE S, MCMANUS D P. Structure and function of invertebrate Kunitz serine protease inhibitors[J]. Developmental & Comparative Immunology, 2013, 39(3): 219-227. |
[3] | 刘云杨, 蒋帅, 李谦, 等. Kunitz型丝氨酸蛋白酶抑制剂研究进展[J]. 生物工程学报, 2021, 37(11): 3988-4000. |
[4] | 刘岳青, 马林源, 陈开廷, 等. 蜱源Kunitz型丝氨酸蛋白酶抑制分子的结构与功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 625-630. |
[5] | 牛蓓, 李锐, 杨林, 等. 一个麻风树Kunitz型蛋白酶抑制剂基因的克隆和鉴定[J]. 四川大学学报(自然科学版), 2016, 53(5): 1169-1176. |
[6] | SCHMIDT M C B, MORAIS K L P, DE ALMEIDA M E S, et al. Amblyomin-X, a recombinant Kunitz-type inhibitor, regulates cell adhesion and migration of human tumor cells[J]. Cell Adhesion & Migration, 2020, 14(1): 129-138. |
[7] | 罗玉娇, 舒衡平, 李滨, 等. 虎纹捕鸟蛛Kunitz型毒素基因的分子改造和表达[J]. 中国病原生物学杂志, 2016, 11(8): 677-684. |
[8] | 陈爽, 梁健, 张荣庆. 合浦珠母贝丝氨酸蛋白酶抑制因子基因pfser1克隆与表达[J]. 广东海洋大学学报, 2020, 40(1): 1-7. |
[9] | XU X, LIU J X, WANG Y J, et al. Kunitz-type serine protease inhibitor is a novel participator in anti-bacterial and anti-inflammatory responses in Japanese flounder (Paralichthys olivaceus)[J]. Fish & Shellfish Immunology, 2018, 80: 22-30. |
[10] | KUNITZ M, NORTHROP J H. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor-trypsin compound[J]. The Journal of General Physiology, 1936, 19(6): 991-1007. |
[11] | MISHRA M. Evolutionary aspects of the structural convergence and functional diversification of Kunitz-domain inhibitors[J]. Journal of Molecular Evolution, 2020, 88(7): 537-548. |
[12] | 袁春华, 梁宋平. Kunitz型丝氨酸蛋白酶抑制剂结构与功能研究[J]. 生命科学研究, 2003, 7(2): 110-115. |
[13] | ANTUCH W, BERNDT K D, CHÁVEZ M A, et al. The NMR solution structure of a Kunitz-type proteinase inhibitor from the sea Anemone Stichodactyla helianthus[J]. European Journal of Biochemistry, 1993, 212(3): 675-684. |
[14] | PRITCHARD L, DUFTON M J. Evolutionary trace analysis of the Kunitz/BPTI family of proteins: functional divergence may have been based on conformational adjustment[J]. Journal of Molecular Biology, 1999, 285(4): 1589-1607. |
[15] | CARLACCI L. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water[J]. Biopolymers, 2001, 58(4): 359-373. |
[16] | KROWARSCH D, OTLEWSKI J. Amino-acid substitutions at the fully exposed P1 site of bovine pancreatic trypsin inhibitor affect its stability[J]. Protein Science, 2001, 10(4): 715-724. |
[17] | SCHEIDIG A J, HYNES T R, PELLETIER L A, et al. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer’s amyloid β-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities[J]. Protein Science, 1997, 6(9): 1806-1824. |
[18] | 时辉宁, 钟玉绪, 丁日高, 等. 组织因子途径抑制物-2的结构及其生物学作用研究进展[J]. 中国医药生物技术, 2009, 4(3): 233-235. |
[19] | PEERSCHKE E I B, PETROVAN R J, GHEBREHIWET B, et al. Tissue factor pathway inhibitor-2 (TFPI-2) recognizes the complement and kininogen binding protein gC1qR/p33 (gC1qR): implications for vascular inflammation[J]. Thrombosis and Haemostasis, 2004, 92(4): 811-819. |
[20] | WOOD J P, ELLERY P E R, MARONEY S A, et al. Biology of tissue factor pathway inhibitor[J]. Blood, 2014, 123(19): 2934-2943. |
[21] | KAMEI S, PETERSEN L C, SPRECHER C A, et al. Inhibitory properties of human recombinant Arg 24 →Gln type-2 tissue factor pathway inhibitor (R24Q TFPI-2)[J]. Thrombosis Research, 1999, 94(3): 147-152. |
[22] | SPRECHER C A, KISIEL W, MATHEWES S, et al. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(8): 3353-3357. |
[23] | 马静, 高金亮. 蜱Kunitz型蛋白酶抑制剂的抗凝机制研究进展[J]. 中国媒介生物学及控制杂志, 2021, 32(1): 111-114. |
[24] | SHIMOMURA T, DENDA K, KITAMURA A, et al. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor[J]. Journal of Biological Chemistry, 1997, 272(10): 6370-6376. |
[25] | HONG Z, NOWAKOWSKI M, SPRONK C, et al. The solution structure of the MANEC-type domain from hepatocyte growth factor activator inhibitor-1 reveals an unexpected PAN/apple domain-type fold[J]. Biochemical Journal, 2015, 466(2): 299-309. |
[26] | LIU M, YUAN C, JENSEN J K, et al. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition[J]. The Journal of Biological Chemistry, 2017, 292(20): 8412-8423. |
[27] | BATISTA I F C, CHUDZINSKI-TAVASSI A M, FARIA F, et al. Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae)[J]. Toxicon, 2008, 51(5): 823-834. |
[28] | BATISTA I F C, RAMOS O H P, VENTURA J S, et al. A new factor Xa inhibitor from Amblyomma cajennense with a unique domain composition[J]. Archives of Biochemistry and Biophysics, 2010, 493(2): 151-156. |
[29] | BRANCO V G, IQBAL A, ALVAREZ-FLORES M P, et al. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2016, 1864(10): 1428-1435. |
[30] | LOBBA A R M, ALVAREZ-FLORES M P, FESSEL M R, et al. A Kunitz-type inhibitor from tick salivary glands: a promising novel antitumor drug candidate[J]. Frontiers in Molecular Biosciences, 2022, 9: 936107. |
[31] | PASQUALOTO K F M, BALAN A, BARRETO S A, et al. Structural findings and molecular modeling approach of a TFPI-like inhibitor[J]. Protein and Peptide Letters, 2014, 21(5): 452-457. |
[32] | JIN C, JIANG R, ZHANG Y H, et al. The dual role of eppin in immunity and biomineralization during nacreous layer formation in mollusks[J]. CrystEngComm, 2023, 25(36): 5160-5173. |
[33] | JIN C, LIU X J, LI J L, et al. A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii[J]. Fish & Shellfish Immunology, 2019, 89: 437-447. |
[34] | CLAUSS A, LILJA H, LUNALL A. A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein[J]. Biochemical Journal, 2002, 368(Pt 1): 233-242. |
[35] | GOMES A A S, SANTOS N C M, ROSA L R, et al. Interactions of the male contraceptive target Eppin with semenogelin-1 and small organic ligands[J]. Scientific Reports, 2023, 13(1): 14382. |
[36] | SCOTT A, GLASGOW A, SMALL D, et al. Characterisation of eppin function: expression and activity in the lung[J]. The European Respiratory Journal, 2017, 50(1): 1601937. |
[37] | WAXMAN L, SMITH D E, ARCURI K E, et al. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa[J]. Science, 1990, 248(4955): 593-596. |
[38] | WAN H, LEE K S, KIM B Y, et al. A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor[J]. PLoS One, 2013, 8(1): e53343. |
[39] | IBELLI A M G, KIM T K, HILL C C, et al. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting[J]. International Journal for Parasitology, 2014, 44(6): 369-379. |
[40] | CIPRANDI A, DE OLIVEIRA S K, MASUDA A, et al. Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor[J]. Experimental Parasitology, 2006, 114(1): 40-46. |
[41] | KATO N, IWANAGA S, OKAYAMA T, et al. Identification and characterization of the plasma kallikrein-kinin system inhibitor, haemaphysalin, from hard tick, Haemaphysalis longicornis[J]. Thrombosis and Haemostasis, 2005, 93(2): 359-367. |
[42] | KATO N, OKAYAMA T, ISAWA H, et al. Contribution of the N-terminal and C-terminal domains of haemaphysalin to inhibition of activation of plasma kallikrein-kinin system[J]. Journal of Biochemistry, 2005, 138(3): 225-235. |
[43] | MORAIS K L P, PACHECO M T F, BERRA C M, et al. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell[J]. Molecular and Cellular Biochemistry, 2016, 415(1): 119-131. |
[44] | DREWES C C, DIAS R Y S, HEBEDA C B, et al. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis[J]. Toxicon, 2012, 60(3): 333-340. |
[45] | CHUDZINSKI-TAVASSI A M, DE-SÁ-JÚNIOR P L, SIMONS S M, et al. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system[J]. Toxicon, 2010, 56(7): 1145-1154. |
[46] | ROY U K, LAVIGNAC N, RAHMAN A M, et al. Purification of lectin and Kunitz trypsin inhibitor from soya seeds[J]. Journal of Chromatographic Science, 2018, 56(5): 436-442. |
[47] | YANG C, ZHANG J J, ZHANG X P, et al. Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression[J]. World Journal of Gastroenterology, 2019, 25(25): 3196-3206. |
[48] | FANG E F, BAH C S, WONG J H, et al. A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration[J]. Archives of Toxicology, 2012, 86(2): 293-304. |
[49] | 陈丹丹, 何南海, 张名昌. 日本囊对虾Kunitz型蛋白酶抑制剂在毕赤酵母中的表达纯化及活性分析[J]. 生物工程学报, 2008, 24(3): 500-503. |
[50] | LEBOULLE G, CRIPPA M, DECREM Y, et al. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks[J]. Journal of Biological Chemistry, 2002, 277(12): 10083-10089. |
[51] | LEBOULLE G, ROCHEZ C, LOUAHED J, et al. Isolation of Ixodes ricinus salivary gland mRNA encoding factors induced during blood feeding[J]. The American Journal of Tropical Medicine and Hygiene, 2002, 66(3): 225-233. |
[52] | PREVOT P P, ADAM B, BOUDJELTIA K Z, et al. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus[J]. Journal of Biological Chemistry, 2006, 281(36): 26361-26369. |
[53] | CHMELAR J, OLIVEIRA C J, REZACOVA P, et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation[J]. Blood, 2011, 117(2): 736-744. |
[54] | PÁLENÍKOVÁ J, LIESKOVSKÁ J, LANGHANSOVÁ H, et al. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway[J]. Infection and Immunity, 2015, 83(5): 1949-1956. |
[55] | ZARBOCK A, POLANOWSKA-GRABOWSKA R K, LEY K. Platelet-neutrophil-interactions: linking hemostasis and inflammation[J]. Blood Reviews, 2007, 21(2): 99-111. |
[56] | YU Y F, CAO J, ZHOU Y Z, et al. Isolation and characterization of two novel serpins from the tick Rhipicephalus haemaphysaloides[J]. Ticks and Tick-Borne Diseases, 2013, 4(4): 297-303. |
[57] | JIN C, CHENG K, JIANG R, et al. A novel Kunitz-type serine protease inhibitor (HcKuSPI) is involved in antibacterial defense in innate immunity and participates in shell formation of Hyriopsis cumingii[J]. Marine Biotechnology, 2024, 26(1): 37-49. |
[58] | DIB H X, DE OLIVEIRA D G L, DE OLIVEIRA C F R, et al. Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp[J]. Archives of Microbiology, 2019, 201(2): 223-233. |
[59] | DE OLIVEIRA C F R, OLIVEIRA C T, TAVEIRA G B, et al. Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species[J]. International Journal of Biological Macromolecules, 2018, 119: 645-653. |
[60] | MEHMOOD S, IMRAN M, ALI A, et al. Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity[J]. Turk Biyoloji Dergisi, 2020, 44(4): 188-200. |
[61] | CAI X X, XIE X L, FU N Y, et al. Physico-chemical and antifungal properties of a trypsin inhibitor from the roots of Pseudostellaria heterophylla[J]. Molecules, 2018, 23(9): 2388. |
[62] | ZHU J Y, HE Y X, YAN X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6: 126. |
[63] | DE MORAES MANZATO V, DI SANTO C, TORQUATO R J S, et al. Boophilin D1, a Kunitz type protease inhibitor, as a source of inhibitors for the ZIKA virus NS2B-NS3 protease[J]. Biochimie, 2023, 214: 96-101. |
[64] | STEINBUCH M, LOEB J. Isolation of an alpha2-globulin from human plasma[J]. Nature, 1961, 192: 1196. |
[65] | SALIER J P. Inter-α-trypsin inhibitor: emergence of a family within the Kunitz-type protease inhibitor superfamily[J]. Trends in Biochemical Sciences, 1990, 15(11):435-439. |
[66] | HOCHSTRASSER K, WACHTER E, ALBRECHT G J, et al. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-alpha-trypsin inhibitor, X. the amino-acid sequences of the trypsin-released inhibitors from horse and pig inter-alpha-trypsin inhibitors[J]. Biological Chemistry Hoppe-Seyler, 1987, 368(1): 727-732. |
[1] | 洪志慧, 柯汉云, 赵帅锋, 胡选祥, 黄艳萍, 徐云红, 潘晓智, 邱志强, 翁秉心, 谢生旺. 稻田测报灯下的昆虫群落结构分析[J]. 浙江农业科学, 2025, 66(6): 1460-1466. |
[2] | 徐梦彬, 周星. 江苏沿淮地区半冬性小麦品种筛选与示范[J]. 浙江农业科学, 2025, 66(4): 897-903. |
[3] | 刘晨星, 曹艳, 夏其乐. 干燥方式对荸荠种杨梅果渣多糖结构和活性的影响[J]. 浙江农业科学, 2025, 66(2): 467-470. |
[4] | 沈文斌. 上海广富林郊野公园自生草本植物群落管理策略与恢复潜力[J]. 浙江农业科学, 2024, 65(9): 2125-2131. |
[5] | 方萍萍, 张婷, 韦静, 王雪艳, 李朝森, 刘慧琴, 万红建, 郭勤卫. 64份白辣椒种质资源的遗传多样性分析[J]. 浙江农业科学, 2024, 65(5): 1056-1063. |
[6] | 蔡新仪, 项秉晗, 潘苏峰, 应俊杰, 闫成进. 浙东山地丘陵麦区杂草群落组成[J]. 浙江农业科学, 2024, 65(3): 661-666. |
[7] | 杨承, 艾永锋, 鲁博文, 宋大江, 潘锋华. 结构优化对铜仁上部烟叶产质量的影响[J]. 浙江农业科学, 2024, 65(2): 307-313. |
[8] | 吴佳, 陈莹. 数字赋能浙江未来乡村发展的机遇、挑战和案例实践[J]. 浙江农业科学, 2024, 65(12): 2819-2825. |
[9] | 李光西, 唐旭兵, 甄安忠, 雷加忠, 阳昊, 杨志吉, 段开伟, 扶艳艳, 鲁耀. 晒黄烟云晒1号烟叶结构优化措施[J]. 浙江农业科学, 2024, 65(11): 2576-2581. |
[10] | 孙肖雨, 戴德江, 方辉, 陈红. 区域稻作结构变化对二化螟种群发生的影响[J]. 浙江农业科学, 2024, 65(11): 2645-2649. |
[11] | 左西龙, 王正波, 陈春生, 王继汉, 王洁, 李俊. 不同缓释肥施用模式对小麦生长及产量的影响[J]. 浙江农业科学, 2024, 65(10): 2393-2397. |
[12] | 张晶晶, 姚燕来, 朱凤香, 洪春来, 朱为静, 洪磊东, 王卫平. 农用酵素特性、研究进展及应用前景[J]. 浙江农业科学, 2024, 65(10): 2509-2513. |
[13] | 池永清, 章明奎. 深耕配施结构调理剂对新垦低丘红壤水分的影响[J]. 浙江农业科学, 2024, 65(1): 230-234. |
[14] | 杜墁钰, 王瑞峰. 数字普惠金融对农民增收的影响机理与实证检验[J]. 浙江农业科学, 2024, 65(1): 235-241. |
[15] | 乔谦, 朱乐, 王江勇, 王璐, 贾曦. 3种地被菊的抗寒生理特性比较[J]. 浙江农业科学, 2023, 64(9): 2203-2209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||