[1] |
徐艳飞, 夏谦, 李康银, 等. 铁皮石斛中石斛多糖、石斛碱、石斛酚的联合提取[J]. 云南化工, 2022, 49(6): 30-32.
|
[2] |
CHENG J J, CHAO C H, CHANG P C, et al. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea[J]. Food Hydrocolloids, 2016, 53: 37-45.
DOI
URL
|
[3] |
WU J J, SHI S S, WANG H J, et al. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review[J]. Carbohyd Polymers, 2016, 144: 474-494.
DOI
URL
|
[4] |
LI A M, SHUAI X Y, JIA Z J, et al. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b[J]. Journal of Translational Medicine, 2015, 13: 100.
DOI
URL
|
[5] |
SHEN L L, DU G. Lycium barbarum polysaccharide stimulates proliferation of MCF-7 cells by the ERK pathway[J]. Life Sciences, 2012, 91(9/10): 353-357.
DOI
URL
|
[6] |
LIU Q Y, YAO Y M, ZHANG S W, et al. Astragalus polysaccharides regulate T cell-mediated immunity via CD11 chigh CD45RBlow DCs in vitro[J]. Journal of Ethnopharmacology, 2011, 136(3): 457-464.
DOI
URL
|
[7] |
BEN YAAKOV D, SHADKCHAN Y, ALBERT N, et al. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2263-2272.
DOI
URL
|
[8] |
ILNICKA A, WALCZYK M, LUKASZEWICZ J P, et al. Antimicrobial carbon materials incorporating copper nano-crystallites and their PLA composites[J]. Journal of Applied Polymer Science, 2016, 133(20): 1-9.
|
[9] |
TARDIF S, CIPULLO S, SØ H U, et al. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J]. Science of the Total Environment, 2019, 652: 744-754.
DOI
URL
|
[10] |
WANG H L, ZHOU L Q, LIAO X J, et al. Toxic effects of oxine-copper on development and behavior in the embryo-larval stages of zebrafish[J]. Aquatic Toxicology, 2019, 210: 242-250.
DOI
PMID
|
[11] |
WANG Q Y, ZHOU D M, CANG L. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide[J]. Soil Biology and Biochemistry, 2009, 41(7): 1504-1509.
DOI
URL
|
[12] |
郑振山, 陈勇达, 赵旭东, 等. 喹啉铜在马铃薯中的残留及消解动态[J]. 农药, 2020, 59(1): 46-48, 55.
|
[13] |
徐娟, 李敏青, 邵琳智, 等. 液相色谱-串联质谱法测定果蔬中喹啉铜的残留量[J]. 分析科学学报, 2019, 35(6): 847-852.
|
[14] |
范珺, 王明林, 于建垒, 等. 黄瓜中霜脲氰和喹啉铜的残留检测及膳食风险评估[J]. 山东农业科学, 2014, 46(5): 122-126.
|
[15] |
周梦春, 舒耀皋, 王颖, 等. 反相高效液相色谱法测定黄瓜和土壤中的喹啉铜残留量[J]. 新疆农业大学学报, 2008, 31(4): 47-49.
|
[16] |
陈思宇, 王明月, 林冰, 等. 分散固相萃取法测定黄瓜中的喹啉铜残留量[J]. 热带作物学报, 2019, 40(7): 1449-1454.
|
[17] |
LI Z M, DENG L G, ZHANG S Q, et al. Dynamics of oxine-copper in pears and soil by high-performance liquid chromatography[J]. Analytical Letters, 2016, 49(6): 737-743.
DOI
URL
|
[18] |
LIU X W, YANG Y, CHEN Y, et al. Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus[J]. Food Additives & Contaminants: Part A, 2019, 36(10): 1538-1550.
|
[19] |
陈显柳, 谢德芳, 陈博钰, 等. 高效液相色谱法测定柑橘中喹啉铜的残留量[J]. 理化检验-化学分册, 2022, 58(5): 594-598.
DOI
|
[20] |
肖浩, 龚道新, 吴亮, 等. 高效液相色谱法测定稻田样品中喹啉铜残留[J]. 农药学学报, 2015, 17(1): 106-110.
|
[21] |
徐小军, 付岩, 王全胜, 等. 喹啉铜在枇杷上的消解、储藏稳定性及风险评估[J]. 食品安全质量检测学报, 2020, 11(12): 3893-3897.
|
[22] |
常培培, 张自坤, 王静静, 等. 喹啉铜在西瓜和土壤中残留及消解动态[J]. 农药, 2020, 59(4): 270-275.
|
[23] |
李雨晨, 李腾, 邓立刚, 等. 超高效液相色谱法测定西瓜中的喹啉铜残留量[J]. 分析测试学报, 2014, 33(8): 951-954.
|
[24] |
姚杰, 刘传德, 周先学, 等. 气相色谱-氮磷检测法检测喹啉铜在苹果中的残留及消解动态[J]. 农药学学报, 2016, 18(1): 130-134.
|
[25] |
王志新, 姚杰, 刘传德, 等. 苹果中喹啉铜残留的GC测定方法探讨[J]. 农学学报, 2015, 5(12): 51-54.
|
[26] |
尹绍静, 柳亚男, 于遒功, 等. 高效液相色谱串联质谱法测定喹啉铜在葡萄和土壤中残留及消解动态[J]. 农药, 2021, 60(5): 357-360, 378.
|
[27] |
胡晨雷, 王全胜, 张亮, 等. 超高效液相色谱-串联质谱法测定梨中多抗·喹啉铜多残留[J]. 食品安全质量检测学报, 2021, 12(2): 660-666.
|
[28] |
钟冬莲. 铁皮石斛中农药多残留检测技术及应用研究[D]. 杭州: 浙江工业大学, 2017.
|