浙江农业科学 ›› 2025, Vol. 66 ›› Issue (8): 2032-2038.DOI: 10.16178/j.issn.0528-9017.20240642
李辉(), 林继彤, 邵祺, 娄燕宏, 王会, 杨全刚, 潘红(
), 诸葛玉平
收稿日期:
2024-08-07
出版日期:
2025-08-11
发布日期:
2025-09-04
通讯作者:
潘红(1990—),女,山东泰安人,副教授,博士,主要从事土壤分子微生物生态学研究,E-mail:panhong6239@163.com。
作者简介:
李辉(1998—),男,河南周口人,硕士,主要从事农田土壤磷循环研究,E-mail: l318061632@163.com。
基金资助:
LI Hui(), LIN Jitong, SHAO Qi, LOU Yanhong, WANG Hui, YANG Quangang, PAN Hong(
), ZHUGE Yuping
Received:
2024-08-07
Online:
2025-08-11
Published:
2025-09-04
摘要:
土壤中磷素储量大,但其中约95%不能被植物直接吸收利用。磷矿产资源不可再生,随着人口的增长以及对粮食需求的不断增加,未来我们可能面临严重的磷资源危机。活化土壤中的难溶性磷,提高土壤磷的生物有效性,高效利用土壤中潜在的磷资源,对农业绿色可持续发展具有重要意义。本文总结了近5 a来农田不同施肥模式对土壤磷组分、phoD和pqqc基因丰度和磷酸酶的影响,梳理了土壤磷转化的关键影响因素,比较了不同施肥模式对磷素转化的微生物机理,以及微生物活化磷素过程的调控因素,分析了不同磷源对土壤环境的影响,以期为剖析磷转化的相关机理、减少磷素损失、提高磷肥利用率提供理论依据。
中图分类号:
李辉, 林继彤, 邵祺, 娄燕宏, 王会, 杨全刚, 潘红, 诸葛玉平. 不同施肥模式对土壤磷酸酶及其功能基因影响的研究进展[J]. 浙江农业科学, 2025, 66(8): 2032-2038.
LI Hui, LIN Jitong, SHAO Qi, LOU Yanhong, WANG Hui, YANG Quangang, PAN Hong, ZHUGE Yuping. Progress of effect of various fertilization patterns on soil phosphatase and its functional genes[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2032-2038.
[1] | 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1): 59-64, 86. |
[2] | CAO N, WANG J W, PANG J Y, et al. Straw retention coupled with mineral phosphorus fertilizer for reducing phosphorus fertilizer input and improving cotton yield in coastal saline soils[J]. Field Crops Research, 2021, 274: 108309. |
[3] | RAFAEL R B A, FERNÁNDEZ-MARCOS M L, COCCO S, et al. Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil[J]. Pedosphere, 2020, 30(6): 719-733. |
[4] | MARU A L, HARUNA A O, ASAP A, et al. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. productivity through efficient use of chicken litter biochar and triple superphosphate[J]. Applied Sciences, 2020, 10(6): 2127. |
[5] | 杨文娜, 余泺, 罗东海, 等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学, 2022, 43(1): 540-549. |
[6] | 杨文娜, 余泺, 罗东海, 等. 土壤 phoC和 phoD微生物群落对化肥和有机肥配施生物炭的响应[J]. 环境科学, 2022, 43(2): 1040-1049. |
[7] | WAN W J, LIU S, LI X, et al. Dispersal limitation driving phoD-harboring bacterial community assembly: a potential indicator for ecosystem muljpgunctionality in long-term fertilized soils[J]. Science of The Total Environment, 2021, 754: 141960. |
[8] | CHEN X D, JIANG N, CHEN Z H, et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials[J]. Applied Soil Ecology, 2017, 119: 197-204. |
[9] | ALORI E T, GLICK B R, BABALOLA O O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology, 2017, 8: 971. |
[10] | YU H, WANG F H, SHAO M M, et al. Effects of rotations with legume on soil functional microbial communities involved in phosphorus transformation[J]. Frontiers in Microbiology, 2021, 12: 661100. |
[11] | GRAFE M, GOERS M, VON TUCHER S, et al. Bacterial potentials for uptake, solubilization and mineralization of extracellular phosphorus in agricultural soils are highly stable under different fertilization regimes[J]. Environmental Microbiology Reports, 2018, 10(3): 320-327. |
[12] | WAN W J, LI X, HAN S, et al. Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria[J]. Soil and Tillage Research, 2020, 196: 104475. |
[13] | ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142. |
[14] | LIU H, HAO Z M, YUAN Y H, et al. Application of mineral phosphorus fertilizer influences rhizosphere chemical and biological characteristics[J]. Archives of Agronomy and Soil Science, 2023, 69(5): 771-784. |
[15] | IKRAM W, AKHTAR M, MOREL C, et al. Phosphate fertilizer premixing with farmyard manure enhances phosphorus availability in calcareous soil for higher wheat productivity[J]. Environmental Science and Pollution Research International, 2019, 26(31): 32276-32284. |
[16] | 吴启华. 长期不同施肥下三种土壤磷素有效性和磷肥利用率的差异机制[D]. 北京: 中国农业大学, 2018. |
[17] | BOITT G, SCHMITT D E, GATIBONI L C, et al. Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil[J]. Geoderma, 2018, 321: 164-172. |
[18] | SONG K, XUE Y, ZHENG X Q, et al. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil[J]. Scienjpgic Reports, 2017, 7(1): 1164. |
[19] | BI Q F, ZHENG B X, LIN X Y, et al. The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios[J]. Chemical Geology, 2018, 483: 56-64. |
[20] | JING Z W, CHEN R R, WEI S P, et al. Response and feedback of C mineralization to P availability driven by soil microorganisms[J]. Soil Biology and Biochemistry, 2017, 105: 111-120. |
[21] | CIAMPITTI I A, PICONE L I, RUBIO G, et al. Pathways of phosphorous fraction dynamics in field crop rotations of the pampas of Argentina[J]. Soil Science Society of America Journal, 2011, 75(3): 918-926. |
[22] | PEÑUELAS J, POULTER B, SARDANS J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications, 2013, 4: 2934. |
[23] | WEI K, CHEN Z H, JIANG N, et al. Effects of mineral phosphorus fertilizer reduction and maize straw incorporation on soil phosphorus availability, acid phosphatase activity, and maize grain yield in NorthEast China[J]. Archives of Agronomy and Soil Science, 2021, 67(1): 66-78. |
[24] | 吴庚福, 黄振瑞, 陈迪文, 等. 不同类型磷肥对土壤磷素形态和烟草生长的影响[J]. 中国烟草科学, 2021, 42(6): 1-7. |
[25] | 田怡, 刘静, 张婷婷, 等. 长期施磷对旱地冬小麦产量及土壤无机磷形态的影响[J]. 植物营养与肥料学报, 2022, 28(1): 94-103. |
[26] | CHEN X D, JIANG N, CONDRON L M, et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs[J]. Geoderma, 2019, 349: 36-44. |
[27] | CHEN X D, JIANG N, CONDRON L M, et al. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, NorthEast China[J]. Science of The Total Environment, 2019, 669: 1011-1018. |
[28] | 石伟, 张丽梅, 王劲松, 等. 磷肥在旱地红壤上的后期效应及其作用机制[J]. 土壤学报, 2022, 59(4): 1100-1111. |
[29] | LUO G W, LING N, NANNIPIERI P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions[J]. Biology and Fertility of Soils, 2017, 53(4): 375-388. |
[30] | LIU J S, MA Q, HUI X L, et al. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency[J]. Soil Biology and Biochemistry, 2020, 149: 107918. |
[31] | ZHENG M M, WANG C, LI W X, et al. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil[J]. European Journal of Soil Biology, 2021, 104: 103312. |
[32] | BI Q F, LI K J, ZHENG B X, et al. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J]. Science of The Total Environment, 2020, 703: 134977. |
[33] | QIN X C, GUO S F, ZHAI L M, et al. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil[J]. Environmental Pollution, 2020, 266: 115304. |
[34] | JIANG N, WEI K, PU J H, et al. A balanced reduction in mineral fertilizers benefits P reserve and inorganic P-solubilizing bacterial communities under residue input[J]. Applied Soil Ecology, 2021, 159: 103833. |
[35] | PIZZEGHELLO D, BERTI A, NARDI S, et al. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy[J]. Agriculture, Ecosystems & Environment, 2011, 141(1/2): 58-66. |
[36] | LI Q J, ZHANG D Q, CHENG H Y, et al. Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation[J]. Journal of Environmental Management, 2022, 309: 114666. |
[37] | GATIBONI L C, BRUNETTO G, DOS SANTOS RHEINHEIMER D, et al. Spectroscopic quanjpgication of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization[J]. Revista Brasileira de Ciência Do Solo, 2013, 37(3): 640-648. |
[38] | 刘志平, 武雪萍, 李若楠, 等. 温室滴灌条件下施用鸡粪和磷肥对土壤磷素的影响[J]. 中国农业科学, 2019, 52(20): 3637-3647. |
[39] | GAUTAM A, SEKARAN U, GUZMAN J, et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure[J]. Environmental and Sustainability Indicators, 2020, 8: 100073. |
[40] | 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D]. 北京: 中国农业大学, 2015. |
[41] | LIU W B, LING N, LUO G W, et al. Active phoD-harboring bacteria are enriched by long-term organic fertilization[J]. Soil Biology and Biochemistry, 2021, 152: 108071. |
[42] | 王亚麒, 刘京, 芶剑渝, 等. 长期有机无机配施下烤烟-玉米轮作优化土壤微生物活化无机磷[J]. 土壤学报, 2022, 59(3): 808-818. |
[43] | GOU X M, CAI Y, WANG C Q, et al. Effects of different long-term cropping systems on phoD-harboring bacterial community in red soils[J]. Journal of Soils and Sediments, 2021, 21(1): 376-387. |
[44] | 戴佩彬. 模拟条件下磷肥配施有机肥对土壤磷素转化迁移及水稻吸收利用的影响[D]. 杭州: 浙江大学, 2016. |
[45] | 王萌, 范分良, 易可可, 等. 不同磷形态对水稻根系细菌群落特征的影响[J]. 中国土壤与肥料, 2022(3): 173-181. |
[46] | HU Y J, XIA Y H, SUN Q, et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils[J]. Science of The Total Environment, 2018, 628: 53-63. |
[47] | KHADEM A, RAIESI F. Response of soil alkaline phosphatase to biochar amendments: changes in kinetic and thermodynamic characteristics[J]. Geoderma, 2019, 337: 44-54. |
[48] | YAO Y, GAO B, ZHANG M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89(11): 1467-1471. |
[49] | LI H X, LI Y X, XU Y, et al. Biochar phosphorus fertilizer effects on soil phosphorus availability[J]. Chemosphere, 2020, 244: 125471. |
[50] | CAO N, ZHI M L, ZHAO W Q, et al. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes[J]. Soil and Tillage Research, 2022, 220: 105390. |
[51] | 刘玉学, 唐旭, 杨生茂, 等. 生物炭对土壤磷素转化的影响及其机理研究进展[J]. 植物营养与肥料学报, 2016, 22(6): 1690-1695. |
[52] | 吴行, 郑琴, 张帅, 等. 镁改性生物炭配施磷肥对红壤磷有效性及小麦产量的影响[J]. 中国土壤与肥料, 2022(3): 84-90. |
[53] | SAHA A, BASAK B B, GAJBHIYE N A, et al. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health[J]. Industrial Crops and Products, 2019, 140: 111607. |
[54] | TIAN J H, KUANG X Z, TANG M T, et al. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of The Total Environment, 2021, 779: 146556. |
[55] | GAO S, DELUCA T H. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands[J]. Soil Biology and Biochemistry, 2018, 126: 144-150. |
[56] | YIN Y N, YANG C, LI M T, et al. Biochar reduces bioavailability of phosphorus during swine manure composting: roles of phoD-harboring bacterial community[J]. Science of The Total Environment, 2023, 858: 159926. |
[57] | LU H W, XU C, ZHANG J C, et al. The characteristics of alkaline phosphatase activity and phoD gene community in heavy-metal contaminated soil remediated by biochar and compost[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(2): 298-303. |
[58] | WANG Q, DUAN C J, GENG Z C, et al. Keystone taxa of phoD-harboring bacteria mediate alkaline phosphatase activity during biochar remediation of Cd-contaminated soil[J]. Science of The Total Environment, 2024, 906: 167726. |
[59] | WANG X C, GE H N, FANG Y Y, et al. Biochar reduces colloidal phosphorus in leachate by regulating phoD- and phoC-harboring microbial communities during drying/rewetting cycles[J]. Biochar, 2023, 5(1): 58. |
[60] | HU W, ZHANG Y P, RONG X M, et al. Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota[J]. Agriculture, Ecosystems & Environment, 2023, 355: 108582. |
[1] | 应虹, 罗艳, 金树权, 周金波, 王明湖. 不同农林废物基生物质炭的结构和吸附特性[J]. 浙江农业科学, 2025, 66(8): 2039-2046. |
[2] | 施浩杰, 李帅, 马嘉伟, 叶正钱, 傅丽青, 王旭东. 水分亏缺条件下生物质炭施用对水稻生长和镉含量的影响[J]. 浙江农业科学, 2025, 66(7): 1570-1577. |
[3] | 蒋红英, 马玲, 张镇武, 吴慧欣, 邢承华. 生物质炭固定化黑曲霉对茶园土壤溴氰菊酯降解的影响[J]. 浙江农业科学, 2025, 66(7): 1603-1606. |
[4] | 金成舟, 金智勇, 洪庆红. 不同施肥处理对甘蔗地径流氮磷的影响[J]. 浙江农业科学, 2025, 66(7): 1607-1611. |
[5] | 顾雪萍, 张逸群, 李亚萍, 孙健, 段晓婧, 刘莹莹, 陶正明, 姜武, 陈家栋. 生物质炭对缓解温郁金连作障碍的影响研究[J]. 浙江农业科学, 2025, 66(7): 1616-1620. |
[6] | 李友杰, 陈梓涵, 杜佳梅, 陈夏妮, 张悦, 杨奇煜, 李子璇, 赵明星, 张宪翠, 李鹏, 周巍, 张玉良, 胡丽华, 吴酬飞. 生物有机肥联合菌剂施用对新垦水田土壤碳组分、酶活性及碳过程的影响[J]. 浙江农业科学, 2025, 66(6): 1501-1505. |
[7] | 王薇薇, 吴永成, 梅燚, 尤春, 祖艳侠, 沈峰, 刘哲, 张丽娜, 冯汝超, 郑佳秋. 有机肥替代化肥对辣椒产量及土壤性质的影响[J]. 浙江农业科学, 2025, 66(5): 1062-1065. |
[8] | 张福建, 陈磊, 惠艳华, 姚文武, 徐敏, 芦艳, 盛海安, 顾婧瑜, 龚凯, 姜惠萍. 复合肥配施生物质炭和腐殖酸对唐菖蒲农艺性状的影响[J]. 浙江农业科学, 2025, 66(5): 1195-1200. |
[9] | 刘芹. 园林绿化垃圾堆肥和生物质炭对滨海盐渍土土壤理化特性的影响[J]. 浙江农业科学, 2025, 66(5): 1257-1262. |
[10] | 杨秋平, 陆丽华, 惠武彬, 姜光明, 许俊伟, 朱瑞鼎, 魏心燕, 施林林. 太湖流域典型农区施肥强度组成特征及影响因素——以苏州太湖生态岛为例[J]. 浙江农业科学, 2025, 66(5): 1277-1281. |
[11] | 刘术新, 吴东涛, 李汉美, 丁枫华. 生物质炭不同施用方式对蚕豆连作障碍的缓解作用研究[J]. 浙江农业科学, 2025, 66(4): 935-939. |
[12] | 蔡达明, 鲁鑫, 李鹏昊, 王卫平, 周治国, 洪春来. 易腐垃圾有机肥施用对水稻生长及土壤理化性质的影响[J]. 浙江农业科学, 2025, 66(3): 566-571. |
[13] | 马良, 金新梅, 张卫兴, 方云峰. 生物质炭与有机肥配施对土壤性质和水稻生长的影响[J]. 浙江农业科学, 2025, 66(3): 580-584. |
[14] | 童文彬, 郑则华, 杨海峻, 李荣会, 叶正钱. 畜禽有机肥与化肥配施条件下橘园土壤细菌群落分布与氮代谢的剖面分析[J]. 浙江农业科学, 2025, 66(3): 760-768. |
[15] | 牛天新, 查燕, 马华升, 熊伟, 黄雨晴. 新垦丘陵山地不同施肥处理对甘薯土壤大型动物多样性的影响研究[J]. 浙江农业科学, 2025, 66(2): 502-506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||