| [1] |
王明芳, 周菊敏, 邵香君, 等. 浙江临安雷竹林适度规模经营的探索[J]. 世界竹藤通讯, 2018, 16(6): 17-19, 25.
|
| [2] |
孙晓, 庄舜尧, 刘国群, 等. 集约经营下雷竹种植对土壤基本性质的影响[J]. 土壤, 2009, 41(5): 784-789.
|
| [3] |
陈珊, 陈双林. 集约经营对雷竹林生态系统稳定性的影响[J]. 浙江农林大学学报, 2013, 30(4): 578-584.
|
| [4] |
DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification: a critical review[J]. Science of the Total Environment, 2017, 581/582: 601-611.
|
| [5] |
阮弋飞, 邬奇峰, 张丹, 等. 临安市主要农地土壤酸化特征及其改良技术探讨[J]. 农学学报, 2016, 6(3): 21-26.
|
| [6] |
陈燕霞, 唐晓东, 游媛, 等. 石灰和沸石对酸化菜园土壤改良效应研究[J]. 广西农业科学, 2009, 40(6): 700-704.
|
| [7] |
LINH T B, SLEUTEL S, ELSACKER S V, et al. Inclusion of upland crops in rice-based rotations affects chemical properties of clay soil[J]. Soil Use and Management, 2015, 31(2): 313-320.
|
| [8] |
敖俊华, 黄振瑞, 江永, 等. 石灰施用对酸性土壤养分状况和甘蔗生长的影响[J]. 中国农学通报, 2010, 26(15): 266-269.
|
| [9] |
BASU M, BHADORIA P B S, MAHAPATRA S C. Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels[J]. Bioresource Technology, 2008, 99(11): 4675-4683.
|
| [10] |
CHEN D L, WANG X X, CARRIÓN V J, et al. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies[J]. Soil Biology and Biochemistry, 2022, 167: 108599.
|
| [11] |
方克明, 肖欣, 王美玲, 等. 农用石灰在酸性及镉污染稻田中试效果[J]. 中国农学通报, 2021, 37(26): 93-97.
|
| [12] |
DANG T, MOSLEY L M, FITZPATRICK R, et al. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release[J]. Environmental Science and Pollution Research International, 2016, 23(23): 23582-23592.
|
| [13] |
WU S W, ZHANG Y, TAN Q L, et al. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin[J]. Science of the Total Environment, 2020, 714: 136722.
|
| [14] |
BUSSCHER W J, NOVAK J M, EVANS D E, et al. Influence of pecan biochar on physical properties of a Norfolk loamy sand[J]. Soil Science, 2010, 175(1): 10-14.
|
| [15] |
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1): 1-18.
|
| [16] |
LIU H, LI S S, QIANG R W, et al. Response of soil microbial community structure to phosphate fertilizer reduction and combinations of microbial fertilizer[J]. Frontiers in Environmental Science, 2022, 10: 899727.
|
| [17] |
孙洪仁, 张吉萍, 冮丽华, 等. 中国水稻土壤氮素丰缺指标与适宜施氮量[J]. 中国农学通报, 2019, 35(11): 82-87.
|
| [18] |
GU W Q, WANG Y N, FENG Z B, et al. Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and japonica rice production system[J]. Frontiers in Environmental Science, 2022, 10: 902752.
|
| [19] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
| [20] |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056.
|
| [21] |
MAGALHÃES T M. Trees in agricultural landscapes maintain soil organic carbon following miombo woodland conversion to shifting cultivation[J]. Geoderma, 2023, 429: 116241.
|
| [22] |
MAGALHÃES T M, MAMUGY F P S. Fine root biomass and soil properties following the conversion of miombo woodlands to shifting cultivation lands[J]. CATENA, 2020, 194: 104693.
|
| [23] |
潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526-535.
|
| [24] |
KUMAR U, KAVIRAJ M, PANNEERSELVAM P, et al. Conversion of mangroves into rice cultivation alters functional soil microbial community in sub-humid tropical paddy soil[J]. Frontiers in Environmental Science, 2022, 10: 858028.
|
| [25] |
谢国雄, 章明奎. 施用生物质炭对红壤有机碳矿化及其组分的影响[J]. 土壤通报, 2014, 45(2): 413-419.
|
| [26] |
KIMETU J M, LEHMANN J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil Research, 2010, 48(7): 577.
|
| [27] |
潘根兴, 周萍, 张旭辉, 等. 不同施肥对水稻土作物碳同化与土壤碳固定的影响: 以太湖地区黄泥土肥料长期试验为例[J]. 生态学报, 2006, 26(11): 3704-3710.
|
| [28] |
CAI Z J, WANG B R, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of Southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270.
|
| [29] |
连旭东, 张璐, 刘思汝, 等. 作物产量对土壤pH的响应差异及其影响因素[J]. 植物营养与肥料学报, 2023, 29(9): 1618-1629.
|
| [30] |
AI C, LIANG G Q, SUN J W, et al. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition[J]. Biology and Fertility of Soils, 2015, 51(4): 465-477.
|
| [31] |
LIU X Y, QU J J, LI L Q, et al. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?: a cross site field experiment from South China[J]. Ecological Engineering, 2012, 42: 168-173.
|
| [32] |
NOOR S, AKHTER S, ISLAM M M, et al. Effect of magnesium on crop yields within maize-green manure-T. aman rice cropping pattern on acid soil[J]. Archives of Agronomy and Soil Science, 2015, 61(10): 1381-1392.
|
| [33] |
OLADELE S O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice-maize cropping sequence[J]. Geoderma, 2019, 353: 359-371.
|
| [34] |
CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44.
|
| [35] |
ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320.
|
| [36] |
WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876): 629.
|
| [37] |
WARNOCK D D, LEHMANN J, KUYPER T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1): 9-20.
|
| [38] |
陈重军, 凌学林, 邢龙, 等. 减肥条件下生物质炭施用对水稻田土壤细菌多样性的影响[J]. 农业资源与环境学报, 2021, 38(3): 385-392.
|
| [39] |
BYSS M, ELHOTTOVÁ D, TŘÍSKA J, et al. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study[J]. Chemosphere, 2008, 73(9): 1518-1523.
|
| [40] |
廖育林, 鲁艳红, 聂军, 等. 长期施肥稻田土壤基础地力和养分利用效率变化特征[J]. 植物营养与肥料学报, 2016, 22(5): 1249-1258.
|
| [41] |
王文慧, 蒋志慧, 张纪, 等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料, 2023(6): 147-153.
|
| [42] |
郑云珠, 孙树臣. 单季施用生物炭提高土壤肥力及小麦玉米轮作周年产量[J]. 江苏农业科学, 2022, 50(20): 257-264.
|
| [43] |
惠超, 杨卫君, 宋世龙, 等. 生物炭施用对麦田土壤团聚体机械稳定性及春小麦产量的影响[J]. 土壤通报, 2022, 53(2): 349-355.
|
| [44] |
李丽, 韩周, 张昀, 等. 减氮配施微生物菌剂对水稻根系发育及土壤酶活性的影响[J]. 土壤通报, 2019, 50(4): 932-939.
|
| [45] |
郭书亚, 尚赏, 张艳, 等. 生物炭施用五年后对土壤生物化学特性及夏玉米产量的影响[J]. 土壤与作物, 2022, 11(3): 290-297.
|