浙江农业科学 ›› 2024, Vol. 65 ›› Issue (6): 1468-1475.DOI: 10.16178/j.issn.0528-9017.20230648
周环1,2,3(), 郑晓杰1,2,3, 邹盈1,2,3,*(
), 李彦坡1,2,3, 叶剑1,2,3, 胡超凡1,2,3, 章志成4
收稿日期:
2023-06-14
出版日期:
2024-06-11
发布日期:
2024-06-20
通讯作者:
邹盈(1977—),女,宁波慈溪人,副教授,本科,研究方向为食品加工,E-mail: 作者简介:
周环(1985—),男,浙江瑞安人,讲师,博士,研究方向为食品安全监测与控制,E-mail: zhouhuan@wzvcst.edu.cn。
基金资助:
ZHOU Huan1,2,3(), ZHENG Xiaojie1,2,3, ZOU Ying1,2,3,*(
), LI Yanpo1,2,3, YE Jian1,2,3, HU Chaofan1,2,3, ZHANG Zhicheng4
Received:
2023-06-14
Online:
2024-06-11
Published:
2024-06-20
摘要:
亚硝酸盐作为一种常见的食品添加剂,能够稳定肉制品的色泽、提高风味、延长货架期。然而,亚硝酸盐同时又是一种有毒的污染物,长期过量摄入将会严重危害人体健康,因此,实现对其高灵敏度、高选择性的快速检测具有十分重要的意义。相较于其他传统检测方法,电化学检测法具有操作简单、选择性好、灵敏度高的优势。而电极材料作为电化学传感器的核心组成,其功能和界面性能都将影响到传感器的综合性能。文章详细介绍了碳、金属、金属氧化物、导电聚合物等纳米复合材料在亚硝酸盐电化学检测中的研究进展,重点详述了构建方法和检测结果,最后对亚硝酸盐传感器的未来发展趋势进行了讨论。
中图分类号:
周环, 郑晓杰, 邹盈, 李彦坡, 叶剑, 胡超凡, 章志成. 纳米材料在电化学检测亚硝酸盐的应用研究进展[J]. 浙江农业科学, 2024, 65(6): 1468-1475.
ZHOU Huan, ZHENG Xiaojie, ZOU Ying, LI Yanpo, YE Jian, HU Chaofan, ZHANG Zhicheng. Research progress on the application of nanomaterials in electrochemical detection of nitrite[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1468-1475.
图2 NrGO修饰玻碳电极制备示意图[15] 和N-CNFs@N-GRQDs亚硝酸盐伏安传感器制备过程[17] A表示NrGO修饰玻碳电极制备示意图,B表示N-CNFs@N-GRQDs亚硝酸盐伏安传感器制备过程。
Fig.2 Schematic diagram of NrGO modified glassy carbon electrode preparation[15] and N-CNFs@N-GRQDs Preparation process of nitrite voltammetric sensor[17]
图3 金属材料示意图 A表示Cu/MWCNTs/GC电极的制备示意图[25];B表示用于亚硝酸盐传感的Au NPs/MoS2/GCE复合物的合成示意图[26]; C表示ERGO/AuNPs的制备和用于电催化亚硝酸盐氧化的示意图[27];D表示Au-PtNPs/PyTS NG/GCE电极的制备过程示意图[30]。
Fig.3 Schematic diagram of metal materials
电极材料 | 线性范围/(μmol·L-1) | 检出限 | 检测样品 | 参考文献 |
---|---|---|---|---|
ERGO/AuNPs/SPCE | 1~6 000 | 0.13 μmol·L-1 | 矿泉水、虾干、腌/咸鱼和香肠 | [ |
Ag-rGO | 0.1~120 | 12 nmol·L-1 | 池塘水 | [ |
f-MWCNT/PdNPs | 0.05~2 887.6 | 22 nmol·L-1 | 自来水、池塘水、饮用水 | [ |
Au-Pt NPs/PyTS-NG | 0.5~1 621 | 0.19 mmol·L-1 | 火腿肠和自来水 | [ |
MWCNTs@Au-Pd/GR | 0.02~55.0 | 9.44 nmol·L-1 | 香肠、奶酪、植物食品、土壤、矿泉水、自来水 | [ |
Ag/Cu/MWNTs | 1.0~1.0×103 | 0.02 μmol·L-1 | 湖水、饮用水、海水 | [ |
Au-Pd/rGO | 0.05~1.0×103 | 0.02 μmol·L-1 | 自来水 | [ |
CoNi/GR | 0.1~30、30~330 | 0.05 mmol·L-1 | 矿泉水、香肠、干酪 | [ |
表1 不同金属复合材料修饰电极在实际样品中测定亚硝酸盐的结果比较
Table 1 Comparison of results for determining nitrite in actual samples with different metal composite material modified electrodes
电极材料 | 线性范围/(μmol·L-1) | 检出限 | 检测样品 | 参考文献 |
---|---|---|---|---|
ERGO/AuNPs/SPCE | 1~6 000 | 0.13 μmol·L-1 | 矿泉水、虾干、腌/咸鱼和香肠 | [ |
Ag-rGO | 0.1~120 | 12 nmol·L-1 | 池塘水 | [ |
f-MWCNT/PdNPs | 0.05~2 887.6 | 22 nmol·L-1 | 自来水、池塘水、饮用水 | [ |
Au-Pt NPs/PyTS-NG | 0.5~1 621 | 0.19 mmol·L-1 | 火腿肠和自来水 | [ |
MWCNTs@Au-Pd/GR | 0.02~55.0 | 9.44 nmol·L-1 | 香肠、奶酪、植物食品、土壤、矿泉水、自来水 | [ |
Ag/Cu/MWNTs | 1.0~1.0×103 | 0.02 μmol·L-1 | 湖水、饮用水、海水 | [ |
Au-Pd/rGO | 0.05~1.0×103 | 0.02 μmol·L-1 | 自来水 | [ |
CoNi/GR | 0.1~30、30~330 | 0.05 mmol·L-1 | 矿泉水、香肠、干酪 | [ |
图4 金属氧化物材料示意图 A表示α-Fe2O3-NAs/CF复合材料合成路线示意图[40];B表示MoO3/Co3O4/GC制备示意图[42];C表示用于亚硝酸盐检测的三元CuO/H-C3N4/rGO修饰玻碳电极传感器的合成示意图[43]。
Fig.4 Schematic diagram of metal oxide materials
[1] | ZHAO K, SONG H Y, ZHUANG S Q, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes[J]. Electrochemistry Communications, 2007, 9(1): 65-70. |
[2] | NAKAMURA K, YOSHIDA Y, MIKAMI I, et al. Selective hydrogenation of nitrate in water over Cu-Pd/mordenite[J]. Applied Catalysis B: Environmental, 2006, 65(1/2): 31-36. |
[3] | JAKSZYN P, GONZALEZ C A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence[J]. World Journal of Gastroenterology, 2006, 12(27): 4296-4303. |
[4] | SALIMI A, KURD M, TEYMOURIAN H, et al. Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis[J]. Sensors and Actuators B: Chemical, 2014, 205: 136-142. |
[5] | HILSHEIMER R, HARWIG J. Colorimetric determination of nitrite from meat and other foods: an alternative colour reagent for the carcinogenic 1-naphthylamine and an improved extraction method[J]. Canadian Institute of Food Science and Technology Journal, 1976, 9(4): 225-227. |
[6] | GARCÍA-ROBLEDO E, CORZO A, PAPASPYROU S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes[J]. Marine Chemistry, 2014, 162:30-36. |
[7] | SALHI E, VON GUNTEN U. Simultaneous determination of bromide, bromate and nitrite in low μg·l-1 levels by ion chromatography without sample pretreatment[J]. Water Research, 1999, 33(15): 3239-3244. |
[8] | JEDLIČKOVÁ V, PALUCH Z, ALUŠÍK Š. Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma[J]. Journal of Chromatography B, 2002, 780(1): 193-197. |
[9] | SMYTHE G A, MATANOVIC G. Specific analysis of nitrate and nitrite by gas chromatography/mass spectrometry[J]. Methods in Enzymology, 2002, 359:148-157. |
[10] | NOROOZIFAR M, KHORASANI-MOTLAGH M, TAHERI A, et al. Application of manganese(Ⅳ) dioxide microcolumn for determination and speciation of nitrite and nitrate using a flow injection analysis-flame atomic absorption spectrometry system[J]. Talanta, 2007, 71(1): 359-364. |
[11] | KOZUB B R, REES N V, COMPTON R G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?[J]. Sensors and Actuators B: Chemical, 2010, 143(2): 539-546. |
[12] | YANG M, YAN Y J, SHI H X, et al. A novel fluorescent sensors for sensitive detection of nitrite ions[J]. Materials Chemistry and Physics, 2020, 239:122121. |
[13] | ZHENG P, KASANI S, SHI X F, et al. Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array[J]. Analytica Chimica Acta, 2018, 1040: 158-165. |
[14] | LI S F, QU J Y, WANG Y, et al. A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide[J]. Analytical Methods, 2016, 8(21): 4204-4210. |
[15] | CHEN D, JIANG J J, DU X Z. Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection[J]. Talanta, 2016, 155:329-335. |
[16] | MEHMETI E, STANKOVIĆ D M, HAJRIZI A, et al. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination[J]. Talanta, 2016, 159: 34-39. |
[17] | LI L B, LIU D, WANG K, et al. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor[J]. Sensors and Actuators B: Chemical, 2017, 252: 17-23. |
[18] | DING B J, WANG H, TAO S Y, et al. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water[J]. RSC Advances, 2016, 6(9): 7302-7309. |
[19] | ZHOU S H, WU H M, WU Y, et al. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems[J]. Thin Solid Films, 2014, 564:406-411. |
[20] | MIAO P, SHEN M, NING L M, et al. Functionalization of platinum nanoparticles for electrochemical detection of nitrite[J]. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2407-2411. |
[21] | MANIKANDAN V S, LIU Z G, CHEN A C. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode[J]. Journal of Electroanalytical Chemistry, 2018, 819: 524-532. |
[22] | GUPTA S, PRAKASH R. Photochemical assisted formation of silver nano dendrites and their application in amperometric sensing of nitrite[J]. RSC Advances, 2014, 4(15): 7521-7527. |
[23] | CHEN S S, SHI Y C, WANG A J, et al. Free-standing Pt nanowire networks with clean surfaces: highly sensitive electrochemical detection of nitrite[J]. Journal of Electroanalytical Chemistry, 2017, 791: 131-137. |
[24] | YANG J H, YANG H T, LIU S H, et al. Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite[J]. Sensors and Actuators B: Chemical, 2015, 220: 652-658. |
[25] | MANOJ D, SARAVANAN R, SANTHANALAKSHMI J, et al. Towards green synthesis of monodisperse Cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor[J]. Sensors and Actuators B: Chemical, 2018, 266: 873-882. |
[26] | ZHANG S, TANG Y P, CHEN Y Y, et al. Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing[J]. Journal of Electroanalytical Chemistry, 2019, 839: 195-201. |
[27] | JIAN J M, FU L F, JI J Y, et al. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods[J]. Sensors and Actuators B: Chemical, 2018, 262:125-136. |
[28] | AHMAD R, MAHMOUDI T, AHN M S, et al. Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite[J]. Journal of Colloid and Interface Science, 2018, 516: 67-75. |
[29] | THIRUMALRAJ B, PALANISAMY S, CHEN S M, et al. Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes[J]. Journal of Colloid and Interface Science, 2016, 478: 413-420. |
[30] | LI Z, AN Z Z, GUO Y Y, et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite[J]. Talanta, 2016, 161: 713-720. |
[31] | YANG Y, ZHANG J, LI Y W, et al. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126865. |
[32] | REZAEI M. An Au-Pd@MWCNT/graphene modified carbon paste electrode as a novel nano-composite sensor for the trace determination of nitrite[J]. Analytical and Bioanalytical Electrochemistry, 2016, 8(3): 287-303. |
[33] | ZHANG Y, NIE J T, WEI H Y, et al. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2018, 258: 1107-1116. |
[34] | LI S S, HU Y Y, WANG A J, et al. Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite[J]. Sensors and Actuators B: Chemical, 2015, 208: 468-474. |
[35] | GHOLIVAND M B, JALALVAND A R, GOICOECHEA H C. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles[J]. Materials Science and Engineering: C, 2014, 40: 109-120. |
[36] | LI D, KANER R B. Shape and aggregation control of nanoparticles: not Shaken, not stirred[J]. Journal of the American Chemical Society, 2006, 128(3): 968-975. |
[37] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. |
[38] | KASSAEE M Z, MOTAMEDI E, MAJDI M. Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite[J]. Chemical Engineering Journal, 2011, 172(1): 540-549. |
[39] | SUDHA V, MOHANTY S A, THANGAMUTHU R. Facile e synthesis of Co3O4 disordered circular sheets for selective electrochemical determination of nitrite[J]. New Journal of Chemistry, 2018, 42(14): 11869-11877. |
[40] | MA Y, SONG X Y, GE X, et al. In situ growth of α-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite[J]. Journal of Materials Chemistry A, 2017, 5(9): 4726-4736. |
[41] | WANG R, WANG Z, XIANG X J, et al. MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications[J]. Chemical Communications, 2018, 54(73): 10340-10342. |
[42] | ZHE T T, LI M Y, LI F, et al. Integrating electrochemical sensor based on MoO3/Co3O4 heterostructure for highly sensitive sensing of nitrite in sausages and water[J]. Food Chemistry, 2022, 367: 130666. |
[43] | LI Y, CHENG C, YANG Y P, et al. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite[J]. Journal of Alloys and Compounds, 2019, 798: 764-772. |
[44] | COSNIER S, HOLZINGER M. Electrosynthesized polymers for biosensing[J]. Chemical Society Reviews, 2011, 40(5): 2146-2156. |
[45] | CHENG Y H, KUNG C W, CHOU L Y, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing[J]. Sensors and Actuators B: Chemical, 2014, 192: 762-768. |
[46] | XU F G, LIU Y, DING G H, et al. Three dimensional macroporous poly(3,4-ethylenedioxythiophene) structure: Electrodeposited preparation and sensor application[J]. Electrochimica Acta, 2014, 150: 223-231. |
[47] | TIAN F Y, LI H J, LI M J, et al. Synthesis of one-dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone,catechol, resorcinol, and nitrite[J]. Synthetic Metals, 2017, 226: 148-156. |
[48] | SUMA B P, ADARAKATTI P S, KEMPAHANUMAKKAGARI S K, et al. A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples[J]. Materials Chemistry and Physics, 2019, 229: 269-278. |
[1] | 朱传帅, 马存发, 武婷, 赵辉. 青花菜抗黑腐病育种研究进展[J]. 浙江农业科学, 2024, 65(5): 1005-1011. |
[2] | 施旭, 高松, 刘帅, 马石全, 黄坤, 潘元宏, 郭建, 宋文峰, 张铁怀, 官群荣, 肖长东, 吴锦慧, 龙宝安, 普恩平, 史晓慧, 吴思. 基于人工智能技术的智慧烟草农业发展探究[J]. 浙江农业科学, 2024, 65(4): 942-948. |
[3] | 刘春晓, 蒋贤达, 李慧, 阚家亮, 王中华, 李晓刚. 促进梨树萌芽抽枝的研究进展[J]. 浙江农业科学, 2024, 65(1): 117-124. |
[4] | 华永刚, 洪文英, 张莉丽, 陈瑞, 吴燕君. 蜜源植物对虫害绿色防控促进作用的研究进展[J]. 浙江农业科学, 2023, 64(2): 421-424. |
[5] | 王荣圆, 闫素辉, 陈娟, 张培文, 周永进, 吴文革, 李文阳. 江淮稻茬小麦耐渍品种筛选及应用研究进展[J]. 浙江农业科学, 2023, 64(12): 2862-2866. |
[6] | 卢云峰, 王木琳, 贾冬冬, 李锐群, 李智海. 含氨基酸水溶肥料应用的研究进展[J]. 浙江农业科学, 2022, 63(1): 1-4. |
[7] | 虞冰, 林琴, 张春荣, 吴园园, 郭钤, 汤涛. 烷基酚聚氧乙烯醚及相关代谢物检测方法研究进展[J]. 浙江农业科学, 2021, 62(6): 1181-1187. |
[8] | 谭一罗, 苏文英, 樊继伟, 秦裕营, 周振玲, 杨和川. 羊肚菌化学成分及药理作用研究进展[J]. 浙江农业科学, 2021, 62(5): 1025-1028. |
[9] | 王晓军, 赵琳, 石江, 骆乐谈, 詹生华, 马华升. 甘薯采后贮藏保鲜及抑芽技术研究进展[J]. 浙江农业科学, 2021, 62(1): 133-138. |
[10] | 张慧青, 孙玉燕, 范敏. 西瓜炭疽病研究进展[J]. 浙江农业科学, 2020, 61(2): 292-295. |
[11] | 杨慧娟, 王复龙, 彭毅, 李建飞, 谭芦兰, 陈黎洪, 肖朝耿, 卢文静, 朱国军, 唐宏刚. 亚硝酸盐替代物对肉糜色泽的影响[J]. 浙江农业科学, 2020, 61(2): 349-351. |
[12] | 陈伊凡, 李欢欢, 张晋, 唐宏刚, 郭斯统, 周安渊, 陈光耀, 陈黎洪. 酱腌菜中亚硝酸盐控制的研究进展[J]. 浙江农业科学, 2020, 61(12): 2618-2621. |
[13] | 杨慧娟, 何悦珊, 彭毅, 陈黎洪, 朱国军, WU Tao, 肖朝耿, 卢文静, 谭芦兰, 唐宏刚, 余小领. 亚硝酸盐替代物对肉糜制品质构的影响[J]. 浙江农业科学, 2020, 61(1): 137-141. |
[14] | 王丽坤, 章金明, 李晓维, 黄俊, 张治军, 吕要斌. 芦笋农药残留研究进展及应对策略探讨[J]. 浙江农业科学, 2019, 60(9): 1638-1640. |
[15] | 李刚, 杨克, 许方程, 董夏梦, 都林娜. 微生物菌剂处理规模化养猪场粪污水的研究进展[J]. 浙江农业科学, 2018, 59(11): 2115-2117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||