[1] |
ZHANG H, VAN DER LEE T, WAALWIJK C, et al. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates[J]. PLoS One, 2012, 7(2): e31722.
|
[2] |
黄昌, 牟建梅, 刘敬阳, 等. 小麦赤霉病抗性鉴定和新抗源筛选[J]. 江苏农业科学, 2000, 28(2): 24-28.
|
[3] |
史建荣, 仇剑波, 董飞, 等. 小麦镰刀菌毒素及其发生风险研究进展[J]. 麦类作物学报, 2016, 36(2): 129-135.
|
[4] |
张海艳, 段云辉, 韩敏, 等. 几种杀菌剂防控小麦赤霉病穗腐及籽粒脱氧雪腐镰刀菌烯醇(DON)毒素的评价[J]. 植物保护, 2021, 47(1): 259-264, 27.
|
[5] |
王平东, 徐宗季, 袁华山, 等. 小麦中呕吐毒素与玉米赤霉烯酮相关性探讨[J]. 粮食储藏, 2021, 50(3): 54-56.
|
[6] |
陈怀谷, 蔡志祥, 陈飞, 等. 不同小麦品种抗赤霉病性类型和抗毒素积累能力分析[J]. 植物保护学报, 2007, 34(1): 32-36.
|
[7] |
巩性涛, 王培, 宋永泉, 等. 小麦中呕吐毒素的分布规律及加工影响[J]. 粮食加工, 2020, 45(1): 27-29.
|
[8] |
王刚, 王玉龙, 张海永, 等. 真菌毒素形成的影响因素[J]. 菌物学报, 2020, 39(3): 477-491.
|
[9] |
陈璨, 余宁静, 单新宇, 等. 小麦赤霉病病情指数与毒素积累量关系探究及全基因组关联分析[J]. 江苏农业科学, 2022, 50(22): 107-114.
|
[10] |
DUAN Y B, LU F, ZHOU Z H, et al. Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum[J]. Journal of Hazardous Materials, 2020, 398: 122908.
|
[11] |
DEL PONTE E M, FERNANDES J M C, BERGSTROM G C. Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat[J]. Journal of Phytopathology, 2007, 155(10): 577-581.
|
[12] |
周明国, 叶钟音, 刘经芬. 杀菌剂抗性研究进展[J]. 南京农业大学学报, 1994, 17(3): 26-34.
|
[13] |
TANG G F, CHEN Y, XU J R, et al. The fungal myosin I is essential for Fusarium toxisome formation[J]. PLoS Pathogens, 2018, 14(1): e1006827.
|
[14] |
AUDENAERT K, CALLEWAERT E, HÖFTE M, et al. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum[J]. BMC Microbiology, 2010, 10: 112.
|
[15] |
LI C F, LIU C L. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis[J]. Environmental Pollution, 2022, 307: 119553.
|
[16] |
XU C, LI M X, ZHOU Z H, et al. Impact of five succinate dehydrogenase inhibitors on DON biosynthesis of Fusarium asiaticum, causing Fusarium head blight in wheat[J]. Toxins, 2019, 11(5): 272.
|
[17] |
陈宏州, 吴佳文, 庄义庆, 等. 不同杀菌剂对小麦赤霉病及籽粒DON毒素的控制效果[J]. 植物保护, 2021, 47(6): 307-317.
|
[18] |
SIOU D, GÉLISSE S, LAVAL V, et al. Effect of wheat spike infection timing on Fusarium head blight development and mycotoxin accumulation[J]. Plant Pathology, 2014, 63(2): 390-399.
|
[19] |
COWGER C, ARRELLANO C. Plump kernels with high deoxynivalenol linked to late Gibberella zeae infection and marginal disease conditions in winter wheat[J]. Phytopathology, 2010, 100(7): 719-728.
|
[20] |
LACEY J, BATEMAN G L, MIROCHA C J. Effects of infection time and moisture on development of ear blight and deoxynivalenol production by Fusarium spp. in wheat[J]. Annals of Applied Biology, 1999, 134(3): 277-283.
|
[21] |
COWGER C, PATTON-OZKURT J, BROWN-GUEDIRA G, et al. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat[J]. Phytopathology, 2009, 99(4): 320-327.
|
[22] |
ANDERSEN K F, MADDEN L V, PAUL P A. Fusarium head blight development and deoxynivalenol accumulation in wheat as influenced by post-anthesis moisture patterns[J]. Phytopathology, 2015, 105(2): 210-219.
|