浙江农业科学 ›› 2025, Vol. 66 ›› Issue (8): 2025-2031.DOI: 10.16178/j.issn.0528-9017.20250189
收稿日期:
2025-03-14
出版日期:
2025-08-11
发布日期:
2025-09-04
通讯作者:
郭静婕(1992—),女,河南济源人,博士,主要研究方向为土壤-植物系统中微塑料与镉的环境行为和毒性效应,E-mail:guojj5@mail2.sysu.edu.cn。
作者简介:
郑伊柠(2002—),女,浙江嘉兴人,本科,主要研究方向为微塑料对土壤镉环境行为的影响,E-mail:334214174@qq.com。
基金资助:
ZHENG Yining(), GUO Jingjie(
), SUN Junkai, SONG Lulu, ZHOU Huajun
Received:
2025-03-14
Online:
2025-08-11
Published:
2025-09-04
摘要:
土壤微塑料通常伴随着重金属同时存在,二者相互作用可能改变彼此的迁移转化行为和生物有效性,从而导致植物对镉的吸收积累发生变化,给农产品安全带来新的挑战。文章综述了土壤微塑料的污染现状及其与镉的相互作用,对微塑料影响植物吸收积累镉的因素和途径进行了分析,微塑料可通过影响土壤理化性质及微生物群落结构改变镉的生物有效性,并与镉形成复合物进入植物根系增加植物吸收积累镉的风险。同时,微塑料对植物的生长发育和代谢均产生一定影响,并能够诱导植物产生氧化应激反应,从而影响植物对镉的吸收积累。最后,本文对未来微塑料在土壤-植物系统中的研究进行了展望,为复合污染风险的评估与治理以及粮食安全生产提供科学依据。
中图分类号:
郑伊柠, 郭静婕, 孙俊凯, 宋璐璐, 周华君. 土壤微塑料对植物吸收积累镉的影响研究进展[J]. 浙江农业科学, 2025, 66(8): 2025-2031.
ZHENG Yining, GUO Jingjie, SUN Junkai, SONG Lulu, ZHOU Huajun. Research progress on the impact of soil microplastics on the absorption and accumulation of cadmium by plants[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2025-2031.
[1] | PlasticsEurope. Plastics-the facts 2020: an analysis of European plastic production, demand and waste data for 2019[R/OL]. ( 2020-12-09)[2025-05-13]. . |
[2] | PlasticsEurope. Plastics-the facts 2024: an analysis of European plastic production, demand and waste data for 2023[R/OL]. ( 2024-12-09)[2025-05-13]. . |
[3] | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
[4] | LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145. |
[5] | 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100-1111. |
[6] | GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International, 2020, 137: 105263. |
[7] | VETHAAK A D, LEGLER J. Microplastics and human health[J]. Science, 2021, 371(6530): 672-674. |
[8] | AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 2021, 416: 126124. |
[9] | RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. |
[10] | OLIVERI CONTI G, FERRANTE M, BANNI M, et al. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population[J]. Environmental Research, 2020, 187: 109677. |
[11] | ABBASI S, MOORE F, KESHAVARZI B, et al. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone[J]. Science of the Total Environment, 2020, 744: 140984. |
[12] | HUANG F Y, HU J Z, CHEN L, et al. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: a meta-analysis[J]. Journal of Hazardous Materials, 2023, 448: 130887. |
[13] | GUO J J, LI F, XIAO H C, et al. Polyethylene and polypropylene microplastics reduce chemisorption of cadmium in paddy soil and increase its bioaccessibility and bioavailability[J]. Journal of Hazardous Materials, 2023, 449: 130994. |
[14] | HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to idenjpgy the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. |
[15] | ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. |
[16] | 国家统计局. 中国农村统计年鉴: China rural statistical yearbook:2009[M]. 北京: 中国统计出版社, 2009. |
[17] | ZHANG D, NG E L, HU W L, et al. Plastic pollution in croplands threatens long-term food security[J]. Global Change Biology, 2020, 26(6): 3356-3367. |
[18] | 侯军华, 檀文炳, 余红, 等. 土壤环境中微塑料的污染现状及其影响研究进展[J]. 环境工程, 2020, 38(2): 16-27, 15. |
[19] | BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. |
[20] | LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75-85. |
[21] | YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. |
[22] | ZHANG Y, WANG K, CHEN W Z, et al. Effects of land use and landscape on the occurrence and distribution of microplastics in soil, China[J]. Science of the Total Environment, 2022, 847: 157598. |
[23] | MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. |
[24] | YANG J, CANG L, SUN Q, et al. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics[J]. Environmental Science and Pollution Research, 2019, 26(22): 23027-23036. |
[25] | BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189-195. |
[26] | ZHANG S W, HAN B, SUN Y H, et al. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J]. Journal of Hazardous Materials, 2020, 388: 121775. |
[27] | ZHOU Y F, YANG Y Y, LIU G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184: 116209. |
[28] | ZUO L Z, LI H X, LIN L, et al. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 2019, 215: 25-32. |
[29] | de SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. |
[30] | FENG X Y, WANG Q L, SUN Y H, et al. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil[J]. Journal of Hazardous Materials, 2022, 424: 127364. |
[31] | LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917. |
[32] | ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. |
[33] | RILLIG M C, de SOUZA MACHADO A A, LEHMANN A, et al. Evolutionary implications of microplastics for soil biota[J]. Environmental Chemistry, 2019, 16(1): 3. |
[34] | QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711. |
[35] | CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271. |
[36] | ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137-7146. |
[37] | LI M, LIU Y, XU G H, et al. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil[J]. Science of the Total Environment, 2021, 760: 144037. |
[38] | YU Z F, SONG S, XU X L, et al. Sources, migration, accumulation and influence of microplastics in terrestrial plant communities[J]. Environmental and Experimental Botany, 2021, 192: 104635. |
[39] | WANG F L, WANG X X, SONG N N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment[J]. Science of the Total Environment, 2021, 784: 147133. |
[40] | JIA H, WU D, YU Y, et al. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.)[J]. Chemosphere, 2022, 288: 132576. |
[41] | QIAN H F, ZHANG M, LIU G F, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, Air, & Soil Pollution, 2018, 229(8): 261. |
[42] | de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. |
[43] | WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791. |
[44] | 李胜宝, 曹力, 秦丽, 等. 丛枝菌根真菌对砂培玉米幼苗根系特征、光合生理与镉累积的影响[J]. 微生物学通报, 2020, 47(11): 3822-3832. |
[45] | WANG F Y. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(20): 1901-1957. |
[46] | OBERBECKMANN S, KREIKEMEYER B, LABRENZ M. Environmental factors support the formation of specific bacterial assemblages on microplastics[J]. Frontiers in Microbiology, 2018, 8: 2709. |
[47] | SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760. |
[48] | BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. |
[49] | JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831-838. |
[50] | 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934. |
[51] | LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. |
[52] | DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892. |
[53] | DONG Y M, GAO M L, SONG Z G, et al. As(Ⅲ) adsorption onto different-sized polystyrene microplastic particles and its mechanism[J]. Chemosphere, 2020, 239: 124792. |
[54] | ZHANG Z Q, CUI Q L, CHEN L, et al. A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention[J]. Journal of Hazardous Materials, 2022, 424: 127750. |
[55] | HUANG F Y, CHEN L, YANG X, et al. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: a review[J]. Journal of Hazardous Materials, 2024, 477: 135221. |
[56] | ROY T, DEY T K, JAMAL M. Microplastic/nanoplastic toxicity in plants: an imminent concern[J]. Environmental Monitoring and Assessment, 2022, 195(1): 27. |
[57] | BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. |
[58] | 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661-4667. |
[59] | GHORI N H, GHORI T, HAYAT M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828. |
[60] | HUA Z D, ZHANG T L, LUO J Q, et al. Internalization, physiological responses and molecular mechanisms of lettuce to polystyrene microplastics of different sizes: Validation of simulated soilless culture[J]. Journal of Hazardous Materials, 2024, 462: 132710. |
[61] | WANG L, GAO Y X, JIANG W, et al. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity[J]. Chemosphere, 2021, 266: 128979. |
[62] | WANG J L, LIU W T, WANG X, et al. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics[J]. Science of the Total Environment, 2024, 907: 167920. |
[1] | 陈翊, 姚梦竹, 李志鹏, 王爽, 张宜明. 水产品中微塑料的检测及其研究进展[J]. 浙江农业科学, 2025, 66(8): 1846-1852. |
[2] | 潘芊璇, 郭梁, 郭静婕, 邹蕾, 郑伊柠. 微塑料对小白菜生长及镉吸收积累的影响[J]. 浙江农业科学, 2025, 66(8): 1882-1890. |
[3] | 李停停, 邢乃林, 黄芸萍, 严蕾艳, 王迎儿, 王毓洪. 不同砧木嫁接对镉胁迫下西瓜苗期生长发育的影响[J]. 浙江农业科学, 2025, 66(7): 1647-1652. |
[4] | 陈玉, 舒兴, 白嘉成, 吕尊富. 基于高光谱的甘薯重金属镉含量监测研究[J]. 浙江农业科学, 2025, 66(6): 1471-1476. |
[5] | 杨文叶, 袁杭杰, 王京文. 碱性土壤中不同种类蔬菜镉富集能力探究[J]. 浙江农业科学, 2025, 66(5): 1100-1103. |
[6] | 郁晓敏, 袁凤杰, 傅旭军, 杨清华, 金杭霞, 竹龙鸣. 大豆籽粒发育过程异黄酮及其组分的积累规律[J]. 浙江农业科学, 2025, 66(4): 904-909. |
[7] | 杨晓磊, 王站付, 陈宇佳, 陆萍, 刘哲辉, 严淑娴, 金思哲. 镉污染稻田中农艺措施类安全利用综合技术研究[J]. 浙江农业科学, 2024, 65(9): 2023-2027. |
[8] | 姜建武, 孙叶芳, 卢华兵, 施腾楠, 张敏. 浙江地区重金属低积累旱粮作物品种筛选[J]. 浙江农业科学, 2024, 65(7): 1521-1530. |
[9] | 韩晓君, 乔志刚. 生物质炭对水稻微量元素吸收积累的影响[J]. 浙江农业科学, 2024, 65(7): 1551-1554. |
[10] | 巩宏杰, 嵇康轩, 李竹, 王波. 外源水杨酸对镉胁迫下三色堇光合与生理特性的影响[J]. 浙江农业科学, 2024, 65(6): 1416-1423. |
[11] | 陶娟花, 石其伟, 章明奎. 浙江省安全利用类稻田土壤硅含量调查及施硅对水稻的增产降镉效果分析[J]. 浙江农业科学, 2024, 65(2): 249-252. |
[12] | 陈胤再, 陈柏成, 梅皓天, 夏枫, 柳丹. 不同采样间距下农田土壤镉含量空间自相关分析的研究[J]. 浙江农业科学, 2024, 65(1): 224-229. |
[13] | 马建芳, 周琼, 周颖杰, 董苾莉. 3种钝化剂对土壤污染治理重金属镉试验效果初报[J]. 浙江农业科学, 2023, 64(9): 2315-2319. |
[14] | 宋肖琴, 陈福明, 陈国安, 罗玉博, 肖林林. 镉污染下镉低累积水稻筛选及其吸收积累特征[J]. 浙江农业科学, 2023, 64(7): 1667-1671. |
[15] | 白俊慧, 何欣, 柳爱春, 刘超. 微塑料暴露下三角鲂体内恩诺沙星代谢和毒性研究[J]. 浙江农业科学, 2023, 64(6): 1363-1366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||